Index Structures

Tecnologie delle Basi di Dati M

Cons of file organizations

Heap and sequential organizations have clear pros: For heap, inserting is very quick For sequential, all operations are quick enough
\square Both have their cons, however:
For heap, searching is very slow
For sequential, searching is efficient (more or less)
only if it is performed on the sort attribute (moreover, periodic re-organizations are a must)

Index structures

They are auxiliary structures designed to speed up the search for records satisfying a given boolean predicate

Data are stored within heap or sequential files
Every index speeds up the search for a different predicate (search key)
They are (in practice) a collection of pairs <key, RID> (entry)
The goal of the index is to speed up the retrieval of those entries having a key value that satisfies the predicate Pro: entries are (much) smaller than records

Access paths

Building indices on a relation provides alternative ways (access paths) to quickly locate data of interest
We commonly use the term (search) key (value) to indicate the value of an attribute used to select records (e.g., B is a key)

Indices: basic principle

- From the logical point of view, an index can be seen as a set of pairs (entries) $\left(\mathrm{k}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right)$, where:
- k_{i} is a key value of the attribute on which the index is built
- p_{i} is a pointer to the record(s) with search key value k_{i} In a DBMS, it is a RID or, at least, a PID
\square The advantage of using an index comes from thefact that the key is just a (small) part of the information in a record
- Therefore, the index is typically smaller than the data file
\square Indices differ in the way they organize the set of pairs $\left(k_{i}, p_{i}\right)$

> Data file

keyCointer C2 8 C5 48 C5 0 C7 32 C11 16$.$

Index access: general schema

Let us consider an index built on a primary key used to search for the record having key k_{i}
The steps to be performed are:

1. Accessing the index
2. Searching for the pair $\left(k_{i}, p_{i}\right)$
3. Accessing the data page pointed by p_{i}

Index types

Different types of indices exist
The first distinction is between
Sorted indices: key values k_{i} are kept sorted, so that they can be accessed in a quicker way
Hash indices: a hash function is used to find out the location of entries with key value k_{i}

Such indices are not well suited for range searches

Indices: terminology

- Clustered vs. unclustered
\square Primary vs. secondary
$\square \quad$ Single-level vs. multi-level
Dense vs. sparse

Such terminology is not standard, for example, someone calls primary what we call clustered and secondary what we call unclustered

Clustered vs. unclustered indices

We say that the index is clustered if it is built on the same attribute used to sort records in the data file, otherwise we say that is unclustered

Clearly, we can build at most one clustered index for each relation, while we can build an arbitrary number of unclustered indices Data file

B

Primary vs. secondary indices

\square We say that the index is primary if it is built on a unique attribute (candidate key), otherwise it is called secondary

Secondary indices with pointers lists

To avoid repeating key values, the most commonly used solution for secondary indices consists in grouping all entries sharing the same key value in a pointers list

Dense vs. sparse indices

In dense indices the number of pointers equals the number of records in the data file
In sparse indices this is lower (usually, on for each data page)
This technique is applicable only to clustered indices (why?)

Single-level vs. multi-level indices

All previous examples included single-level (or "flat") indices However, we can "index the index" using a (sparse!) index, and so on (recursively), creating a multi-level structure (tree)
2-levels index

Example (1)

primary clustered sparse single-level index

Index	7	160229323	BNCGRG78L21A944K	Bianchi	Giorgio
		160235467	RSSNNA78A53A944V	Rossi	Anna
		160239654	VRDMRC79H20F839X	Verdi	Marco
160229323		160239980	VRDMRT78L66A944K	Verdoni	Marta
160239980	\bigcirc	160240467	-		
160240576		
		160240532
\ldots	1	160240576	\ldots
		160240600
		160240623	\ldots

Example (2)
secondary unclustered dense single-level index
data pages

Index specification in SQL

In SQL, we can define indices by way of the CREATE INDEX statement (this is not standard!) In DB2:

CREATE INDEX VotoIDX ON Esami (Voto DESC)
-- secondary unclustered index
-- ASC is the default
-- primary unclustered index
-- clustered index
-- multi-attribute index

Multi-level indices

For efficiency reasons, usually indices are multi-level (trees)

- Can we "adapt" to secondary memory search trees meant for main memory?
- Requisites:

Balancing (worst case performance)
Pagination (we are using disk)
Minimal page utilization (size)
Updating efficiency

Paginating trees (i)

Trees for main memory (AVL trees, red-black trees) are typically binary trees
Very large number of nodes
Visiting the tree requires several accesses We should pack several nodes in a single page

Paginating trees(ii)

Cons:
Complication of the balancing algorithm (inefficient during updates)
No guarantee on the minimum page utilization
We should find a specific solution!

B-tree (R. Bayer \& E. McCreight, 1972)

\square Tree-shaped data structure that keeps sorted data and balances nodes allowing insert, deletion, and search operations in logarithmically amortized time
\square Etymology (D. Comer):
Balanced?
Broad?
Bushy?
Boeing?
Bayer?
"What really lives to say is: the more you think about what the B in B-trees means, the better you understand B-trees."
(E. McCreight, 2013)

B-tree: terminology

A B-tree is a multi-way perfectly balanced tree where nodes correspond to data pages

Every node contains a number m of entries that can vary in the range $\mathbf{d} \mathbf{- 2 d}$ ($\mathbf{d}=$ order of the tree)

The number of children nodes of each node equals $\mathrm{m}+1$ (thus it can vary in the range $\mathrm{d}+1 \mathbf{- 2 d + 1}$) High fan-out, thus limited height
(Very) low search cost
Limited size
The root node is allowed to violate the minimum utilization constraint, thus having a single entry

B-tree: features

Perfect balancing means that every path from the root to any leaf has the same length (height of the tree)
The search algorithm follows a single path from the root to a single leaf (cost \leq height)
Perfect balancing is guaranteed by algorithms for inserting and deleting records

In order to guarantee balancing, node-branching operations are performed towards the root (not towards the leaves)
Minimum occupation of 50\%
(except for the root node)
Typical occupation > 66\%

B-tree: format of internal nodes

Internal nodes have the following format, where: $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{m}}$

B-tree: format of leaf nodes

Leaf nodes have the following format, where: $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{m}}$

$\left(k_{1}, r_{1}\right)$	$\left(k_{2}, r_{2}\right)$	\ldots	$\left(k_{i}, r_{i}\right)$	$\left(k_{i+1}, r_{i+1}\right)$	\ldots	$\left(k_{m}, r_{m}\right)$	

Since no pointers (to sub-trees) exist, typically leaf nodes can store more entries than internal nodes

Example of B-tree

This is an example of an order 1 B-tree:

B-tree: search

The algorithm starts by visiting the tree root Usually, this is kept in main memory
\square We look for the search key k within current node entries
If such an entry exist, found
If such entry does not exist and we are in a leaf, not found If such entry does not exist and we are in an internal node, replace the current node with its i-th children node, where: $\mathrm{k}_{\mathrm{i}-1}<\mathrm{k}<\mathrm{k}_{\mathrm{i}}$

B-tree: search example

We search for the key 40
$40<100=>$ we follow the left child
$40>30=>$ we follow the right child

What if we search for 30 ? And what for 90?

Search cost

Every node is replaced by one of its children
\square In the worst case we reach a leaf node

- Cost \leq tree height $-1+1$
- 1 because the root node is in RAM
+1 for accessing the data file
- Not needed if the index contains the data
- It follows that we need to know how to compute the height of a B-tree with order d

Maximum number of nodes in a B-tree with height h

The maximum number of nodes is reached when all nodes are full, that is they contain 2d entries

Every internal node thus has $2 d+1$ child nodes

$$
b_{\max }=\sum_{l=0}^{h-1}(2 d+1)^{\prime}=\frac{(2 d+1)^{h}-1}{2 d}
$$

The maximum number of entries is therefore:

$$
N_{\max }=2 d \cdot b_{\max }=(2 d+1)^{h}-1
$$

Minimum number of nodes in a B-tree with height h

The minimum number of nodes is reached when all nodes (except the root) are half full, that is they contain d entries, while the root only contains a single entry

Every internal node thus has $d+1$ child nodes

$$
b_{\min }=1+2 \sum_{l=0}^{n-2}(d+1)^{\prime}=1+2 \frac{(d+1)^{h-1}-1}{d}
$$

The minimum number of entries is therefore :

$$
N_{\min }=1+d\left(b_{\min }-1\right)=2(d+1)^{h-1}-1
$$

Height of a B-tree

Now, we know N, thus we can compute the tree height as:

$$
\begin{aligned}
N_{\min } & \leq N \leq N_{\max } \\
2(d+1)^{h-1}-1 & \leq N \leq(2 d+1)^{h}-1
\end{aligned}
$$

Moving to logarithms, we obtain:

$$
\left\lceil\log _{2 d+1}(N+1)\right\rceil \leq h \leq\left\lfloor\log _{d+1}\left(\frac{N+1}{2}\right)\right\rfloor+1
$$

Height of a B-tree: example

- Let us consider the following values:

Key length: 8 bytes
RID length: 4 bytes
PID length: 2 bytes
Page size: 4096 bytes
We obtain:

$$
\begin{aligned}
& (8+4) 2 d+2(2 d+1)=4096 \\
& d=\lfloor(4096-2) /(24+4)\rfloor=146
\end{aligned}
$$

If $\mathrm{N}=10^{9}$, searching for a key value requires at most $\left\lfloor\log _{147}\left(10^{9} / 2\right)\right\rfloor+1=5$ I/O operations!

A binary search would require 22 accesses, supposing all pages are completely full

Height of a B-tree : considerations

Variability of h is, with N and d fixed, very limited (maximum - minimum $=1$)
With the following values of d, with $h=3$ we can store up to $\left(2^{*} 146+1\right)^{3}-1=$ about 25 millions keys

P	d	N					
		1000		1000000		1000000000	
		$h_{\text {min }}$	$h_{\text {max }}$	$h_{\text {min }}$	$h_{\text {max }}$	$h_{\text {min }}$	$h_{\text {max }}$
512	18	3	3	5	5	7	8
1024	36	2	2	4	4	6	6
2048	73	2	2	4	4	5	5
4096	146	2	2	3	3	5	5
8192	292	2	2	3	3	4	4
16384	585	1	2	3	3	4	4

B-tree: range search

The algorithm starts by visiting the tree root
The tree is traversed in-order

- Supposing d=0:

Visit the left sub-tree
Visit the key
Visit the right sub-tree
It is inefficient, since RIDs are stored also in internal nodes

B^{+}-tree

\square The main features of a B^{+}-tree are:
The entries ($\mathrm{k}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}$) are all contained in leaf nodes
The tree is higher (with respect to a B-tree)
Leaves are linked as a list (possibly, double-linked) using pointers (PIDs) to simplify range search Internal nodes contain only key values (not necessarily corresponding to values existing in data records)

The order of internal nodes is higher
The tree is lower (with respect to a B-tree)

B^{+}-tree: format of internal nodes

Internal nodes have the following format, where: $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{m}}$

Example of B^{+}-tree

This is an example of an order $1 \mathrm{~B}^{+}$-tree

B^{+}-tree: search

- The algorithm starts by visiting the tree root

Usually, this is kept in main memory

- We look for the search key k within current node entries

If we are in an internal node, replace the current node with its i-th children node, where: $\mathrm{k}_{\mathrm{i}-1}<\mathrm{k}<\mathrm{k}_{\mathrm{i}}$
If we are in a leaf node and such an entry exist, found
If we are in a leaf node and such entry does not exist, not found

- Cost = tree height

B^{+}-tree: search example

We search for the key 40

$$
40<100=>\text { we follow the left child }
$$

$40>30=>$ we follow the right child

What if we search for 30 ? And what for 90 ?

B^{+}-tree: range search

Let us suppose to search for the range $\left[k_{\text {low, }}, k_{\text {high }}\right]$
Search for the first key value $k \geq k_{\text {low }}$

- Since leaves are linked as a list, we can avoid traversing the tree and sequentially scan leaf nodes until we find a value $k>k_{\text {high }}$
- The RIDs we find in the list are the query result If the index is unclustered, we might need to sort RIDs, in order to avoid accessing a page multiple times And what if the index is sparse?

B+-tree: range search example

We search for keys in the range [35,160]
$35<100=>$ we follow the left child
$35>30=>$ we follow the right child
From here, we scan leaves until we find $164>160$

B^{+}-tree: insert

Let us suppose we want to insert a new entry (k,r)
\square The insert algorithm first looks for the leaf node where the new key value k should be inserted
\square If there is enough space (the leaf contains less than 2d entries) the new pair (k, r) is inserted in the leaf and the algorithm ends
What if there is not space enough (overflown leaf)?

B^{+}-tree: leaf split

The overflown leaf F is split in two leaves (F_{L} e F_{R})
Each leaf will contain half of F entries

- We compute the median value k_{c} of F entries (usually $c=d$)
\square We move to F_{L} all entries having key value $k \leq k_{c}$
- We move to F_{R} all entries having key value $k>k_{c}$

In the parent node of F the pointer to F is replaced by the two pointers to F_{L} and F_{R} and by the value k_{c}

B^{+}-tree: split propagation

What if the parent node of F is full?
It is an overflown node: we act as before, so we split it
\square It follows that splitting propagates recursively towards the root
\square In the worst case, the root node is also full, we split it in two and create a new root node

The tree height increases
This is why the root cannot have minimum occupation higher than 2

B^{+}-tree: split example

We insert the key value 9

B^{+}-tree: insert cost

Without split: h reads +1 write

With split:

In the worst case, we recursively split up to the root:
h reads $+2 h+1$ writes
For computing the average value, we should note that, for a tree with b nodes, we had b-1 splits
Since $N_{\min }=1+d(b-1) \leq N$
We obtain that the average number of splits is $(b-1) / N$, that is about 1/d
Average cost: $\leq h$ reads $+1+2 / d$ writes

B^{+}-tree: alternative strategy for overflows

As we just saw, splitting a node could be very inefficient
An alternative strategy considers giving some entries of the overflown node to a non-overflown sibling node (with the same parent node) (re-distribution)

We reduce the number of splits
The cost is higher (we read and re-write more nodes)
On average, we obtain a "fuller" tree

B^{+}-tree: delete

Let us suppose we want to delete an entry (k, r)
The delete algorithm first looks for the leaf node where the key value k should be stored
We delete the entry from the leaf
If the leaf contains at least d entries the algorithm ends
What if the leaf contains d-1 entries (underflown leaf)?

B^{+}-tree: underflow management

- We have two alternatives:

Redistributing entries of the underflown leaf with a sibling leaf (with the same parent node)
Delete the underflown leaf, inserting its entries in a sibling leaf
The second alternative is possible only if the sibling leaf has d or d+1 entry (otherwise?)
\square Deletion can be recursively propagated towards the root
In the worst case, the root underflows
The tree height decreases

B^{+}-tree: redistribution

If the sibling node contains more than $\mathrm{d}+1$ entries we have to redistribute
Entries are distributed in a balanced way
among the two sibling nodes

- We should update the separating value in the parent node

The number of entries in the father node does not change This phenomenon does not propagate towards the root

B^{+}-tree: concatenation example

Delete the key value 10

B^{+}-tree: redistribution example

Delete the key value 19

B^{+}-tree: delete cost

Without underflow: h reads +1 write
With underflow:
Every concatenation costs 1 read +2 writes
In the worst case, we recursively concatenate up to the root

- Concatenation for all levels, except the upper two
- Redistribution in the root child

Maximum cost: $2 h-1$ reads $+h+1$ writes
Average number of concatenations: $1 / \mathrm{d}$
Average cost: $\leq h+1+1 / \mathrm{d}$ reads $+1+2+2 / \mathrm{d}$ writes

B^{+}-tree: memory occupation

Every internal node contains at most
2 d key values and 2d+1 PIDs
\square The order of a B^{+}-tree is therefore computed as:

$$
d=\left\lfloor\frac{\text { pagesize }- \text { PIDsize }}{2(\text { keysize }+ \text { PIDsize })}\right\rfloor
$$

For trees, we need to know whether the index is primary or secondary

In some cases, the leaf level can coincide with the data file

B^{+}-tree: number of leaves (primary index)

In every leaf we find at most 2d entries (k, r) and 1 or 2 pointers to sibling nodes
Therefore, the order of leaf nodes is:

$$
d_{\text {leat }}=\left\lfloor\frac{\text { pagesize }-2 \text { PIDsize }}{2(\text { keysize }+ \text { RIDsize })}\right\rfloor
$$

Thus, the number of leaf nodes is:

$$
N L=\left\lceil\frac{N}{d_{\text {leat }} \cdot u}\right\rceil
$$

The average fill factor u usually equals $\log 2$

Height of a B^{+}-tree

Since we know NL, we can now compute the B^{+}-tree height:

$$
\begin{aligned}
N L_{\text {min }} & \leq N L \leq N L_{\text {max }} \\
2(d+1)^{h-2} & \leq N L \leq(2 d+1)^{h-1}
\end{aligned}
$$

Moving to logarithms, we obtain:

$$
\left\lceil\log _{2 d+1}(N L)\right\rceil+1 \leq h \leq\left\lfloor\log _{d+1}\left(\frac{N L}{2}\right)\right\rfloor+2
$$

B^{+}-tree in practice

Secondary index
B^{+}-tree as a data file
Variable-length keys
Key compression
Multi-attribute B $^{+}$-tree
Bulk-loading
Implementing B^{+}-tree: GiST

B^{+}-tree as a secondary index

When duplicate values exist, every key value could not be paired with just a RID, but to a RID list

Tipically, the list is kept sorted for PID values (why?)

- What if the RID list is (very) long?

It can be the case that the size of a single entry exceeds the page size

- Possible solutions:

Overflow pages for the leaf
Duplicating the keys in the index
Using PIDs instead of RIDs
Posting file

B^{+}-tree: duplicating keys

This means that several entries exist with the same key value (but different RID)
We should slightly modify the search algorithm (in practice, this becomes a range search)

- Not every leaf is "addressed"

Inefficient when deleting

- We insert the RID as "part" of the key The index is now "primary"

B^{+}-tree: using PIDs

Instead of keeping a list of RIDs, we keep a list of PIDs, including only those pages containing at least a record with that key value

PIDsize \leq RIDsize
number of PIDs \leq number of RID
This is efficient if a page usually contains several records with the same key value

Clustered index

B^{+}-tree: posting file

- The RID list is stored in a separate file
\square Every entry in the posting file has the format (k,I), where
k key value
I RID list having key value k
$\square \mathrm{B}^{+}$-tree entries contain pointers to posting file entries
\square We introduce an additional indirection level
The cost of each operation is increased by 1

B^{+}-tree as a data file

Tree leaves contain the data records
In its original version, the B-tree was introduced as a data file organization
\square Pros:
The data file is automatically sorted
Sorting is kept also when insertion/deletions are present
Cons:
Updates move records, thus changing their RIDs...

B^{+}-tree: variable-length keys

What we saw up to now is only valid for fixed-length entries This cannot hold in some cases:

Variable-length keys(e.g., varchar)
Secondary index

- Index as a data file

In such cases, the concept of order is no longer valid, and we should apply considerations on minimum node utilization

B^{+}-tree: key compression

Clearly, in order to minimize access costs, we should strive to have high values of d
\square We can consider reducing the key length (compress) within nodes
B^{+}-trees are not constrained to have existing key values within internal nodes
Their goal is to distinguish the content of sibling nodes
Example:

> Semenzara ... Serbelloni Mazzanti Vien Dal Mare

Silvani...
"Ser" is enough...

B^{+}-tree: multi-attribute searching

Suppose we have a multi-attribute search predicate

```
SELECT * FROM persone
WHERE cognome="Rossi"
AND anno>1990
```

How can we exploit an index to efficiently solve such query?

B^{+}-tree: using multiple indices

A first technique exploits a single index:
We use only the first (or the second) predicate to retrieve all result records
Then, we verify the remaining predicate on such records
\square A second technique exploits both indices:
We separately retrieve RIDs of records satisfying either predicate
We perform the intersection of the results
This is efficient if RIDs are sorted

Multi-attribute B^{+}-tree

- In both cases, the additional work to be done can nullify the advantage of using the index
- We can build a multi-attribute index
- The key is composed by the concatenation of relevant attributes
- Sorting is performed on lexicographic order

We consider the following attribute only if the previous attribute is equal

Multi-attribute B+-tree: example

Index on (cognome, anno)

With this we can efficiently solve queries on cognome and (cognome, anno)
What about range searches?
Not on anno alone (why?)
With n attributes we can have n ! different indices

B+-tree: bulk-loading

- Come visto, l'inserimento di elementi in un B^{+}-tree provoca uno split ogni d record inseriti
- Spesso la decisione di costruire un indice non avviene in fase di creazione del DB ma in seguito

Ad esempio, ci accorgiamo che una query è lenta
\square È conveniente creare un indice su una tabella numerosa effettuando l'inserimento uno a uno?

Evidentemente no...

B^{+}-tree: loading

A list of entries (key,RID) is created and sorted for key values

- Such list (appropriately paged) corresponds to the leaf level

In case, we can use a fill factor lower than 100%

- Starting from the key values in every leaf node a list of entries (key,PID) is created
Such list (appropriately paged) corresponds to the first level above the leaves
... and so on, recursively, until we reach the root (all entries can be contained in a single node)

Implementing B+-tree: GiST

GiST (Generalized Search Tree) (Hellerstein, Naughton, Pfeffer, '95) is not a specific access method, but a general structure that, when appropriately instantiated, can behave like a B^{+}-tree, a R -tree, etc.
The main goal is not defining a new index type, rather simplifying the development of different access methods

For example: B^{+-}tree in the Postgres system requires about 3000 lines of C code
The same B^{+}-tree implemented as a GiST instance, requires about 500 lines of code

Basic GiST concepts

Instead of considering specific queries, each query is seen as a generic predicate (q)
Every GiST node contains a list of entries (p,ptr), where p is a predicate (key) and ptr is a pointer
We only access the sub-tree referred by the pointer ptr associated to the key p if p is consistent with the q predicate, that is, only if p does not exclude the possibility that the sub-tree could contain some records satisfying q The only GiST constraint is the monotonicity of p, that should hold for every record contained in the sub-tree pointed by ptr

Predicate monotonicity

We should check whether, given a query q, the sub-tree pointed by ptr should be accessed
E.g.: q=italian(X)\&\&student(X)
E.g.: q=mexican(X)\&\&freshman(X)
E.g.: q=french(X)\&\&worker(X)

GiST properties

Independently of the specific instance, every GiST has the following properties:

A GiST is a perfectly balanced paged tree
An entry in an internal node is a pair (p,ptr), where:

- p predicate used as a search key
- ptr pointer to another GiST node

An entry in a leaf node is a pair ($p, p t r$), where:

- p key value
- ptr pointer to a tuple (DB record) satisfying p

Every node (except the root) contains at most M entries and at least $\mathrm{f} M$ entries, with $2 / \mathrm{M} \leq \mathrm{f} \leq 1 / 2$ ($\mathrm{f}=$ minimum fill factor)

With variable-length entries, we use values dependent on entries size
The root, if it is not a leaf, contains at least two entries
For each entry (p,ptr) in an internal node, p holds for all tuples reachable from ptr

The real GiST

The base of GiST is the definition of a number of methods, used to manage:
key values (Key methods)
\square tree nodes (Tree methods)
\square The GiST definition only specifies Tree methods
Implementation of Key methods is given when GiST is instantiated to manage a specific type of keys
E.g.: real values (B+-tree)
\square E.g.: multi-dimensional ranges (R-tree)
\square Since Key methods are called by Tree methods, we need to provide a standard interface for the former ones

Key methods: search

- Consistent(E,q)

Input:	Entry $\mathrm{E}=(\mathrm{p}, \mathrm{ptr})$ and search predicate q
Output:	if p \& $q==$ false then false else true

The goal of Consistent is "pruning" the search space (that is, eliminating sub-trees)
If the predicate of a sub-tree is not consistent with the query, then we avoid visiting the whole sub-tree

Consistent: comments

- If the test p \& q is computationally demanding, we can still use a conservative approximation, that is, Consistent returns "true" even if p \& $q=$ false

This only affects efficiency, not correctness of results (we access a sub-tree, although the records contained therein do not belong to the query result)
Consistent (just like the other methods) is specified so as to work with arbitrarily complex predicates

In practice, predicates can be "restricted" in order to improve algorithms performance

Consistent in B^{+}-tree

Every predicate is a range $[x, y[$
If the query is a single value v
Consistent returns true if and only if $x \leq v<y$
If the query is a range [v, w [
Consistent returns false if and only if $x \geq w$ or $y \leq v$

Key methods: predicate creation

Union(P)
Input: \quad Set of entries $P=\left\{\left(p_{1}, \text { ptr }_{1}\right)_{\left., \ldots,\left(p_{n}, p t r_{n}\right)\right\}}\right.$
Output: A predicate r holding for all tuples reachable by way of one of the entry pointers
\square The goal of Union is providing the information needed to characterize the predicate of a parent node, starting from predicates of children nodes

- In general, r can be logically derived as a predicate such as $\left(p_{1}|\ldots| p_{n}\right) \Rightarrow r$

Union in B^{+}-tree

Given $\mathrm{P}=\left\{\left(\left[\mathrm{v}_{1}, \mathrm{w}_{1}\left[, \mathrm{ptr} \mathrm{r}_{1}\right), \ldots,\left(\left[\mathrm{v}_{\mathrm{n}}, \mathrm{w}_{\mathrm{n}}\left[, \mathrm{ptr}_{\mathrm{n}}\right)\right\}\right.\right.\right.\right.$
Returns $\left[\min \left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \max \left\{\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}[\right.$

Key methods: key compression

Compress(E)
Input: \quad Entry $E=(p, p t r)$
Output: Entry $\mathrm{E}^{\prime}=\left(\mathrm{p}^{\prime}, \mathrm{ptr}\right)$, with p^{\prime} compressed representation of p
The goal of Compress is providing a more efficient representation of the p predicate
E.g.: separators in place of totally ordered ranges
E.g.: prefixes from strings (prefix- B^{+}-tree)

Key methods: key decompression

Decompress(E)
Input: Entry $E^{\prime}=\left(p^{\prime}, p t r\right)$, with $p^{\prime}=\operatorname{Compress}(p)$
Output: \quad Entry $\mathrm{E}=(\mathrm{r}, \mathrm{ptr})$, with $\mathrm{p} \Rightarrow r$
Compression is, in general, lossy
E.g.: prefix- B^{+}-tree

Condition $\mathrm{p} \Rightarrow x$ requires that, if information loss occurs, what we obtain with Decompress is a predicate that holds if p holds
The simplest case is when Decompress is the identity function

Key methods: insert

- Penalty $\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$

Input: Entries $\mathrm{E}_{1}=\left(\mathrm{p}_{1}, \mathrm{ptr}_{1}\right)$ and $\mathrm{E}_{2}=\left(\mathrm{p}_{2}, \mathrm{ptr}_{2}\right)$
Output: A "penalty" value resulting from inserting E_{2} in the sub-tree rooted in E_{1}
\square Penalty is used by Tree methods Insert and Split, and is needed to compare different alternatives for updating the tree

Penalty in B^{+}-tree

$E_{1}=\left(\left[x_{1}, y_{1}\left[, \operatorname{ptr}_{1}\right)\right.\right.$ e $E_{2}=\left(\left[x_{2}, y_{2}\left[, p t r_{2}\right)\right.\right.$
If E_{1} is the first entry in its node
Penalty returns max $\left\{y_{2}-y_{1}, 0\right\}$
If E_{1} is the last entry in its node
Penalty returns $\max \left\{\mathrm{x}_{1}-\mathrm{x}_{2}, 0\right\}$
Otherwise
Penalty returns $\max \left\{y_{2}-y_{1}, 0\right\}+\max \left\{x_{1}-x_{2}, 0\right\}$

Key methods: split

PickSplit(P)
Input: Set of M+1 entries
Output: Two sets of entries, P_{1} e P_{2}, with cardinality $\geq f \mathrm{M}$
PickSplit implements the real split strategy, which is not detailed at this level
Usually, we try to minimize some metric similar to Penalty

Picksplit in B^{+}-tree

P_{1} contains the first $(M+1) / 2$ entries
P_{2} contains the remaining entries
With variable-length entries we use some criterion on entry size, not on number of entries

This could lead to violate the minimum utilization constraint

Tree methods

Tree methods call other tree methods and use defined Key methods
We implicitly assume that keys are compressed on write and de-compressed on read

Tree methods: architecture

\square Search: calls Consistent

- Insert: calls ChooseSubtree, Split and AdjustKeys
- ChooseSubtree: calls Penalty
\square Split: calls a PickSplit and Union
- AdjustKeys: calls Union
\square Delete: calls Search and CondenseTree
- CondenseTree: calls AdjustKeys and Insert

Search

The search algorithm recursively descend the tree, using Consistent to prune useless branches
Search(R,q)
Input: (sub-)tree rooted at R and query q
Output: all records satisfying q
if R is not a leaf

for each E in R

if Consistent(E,q) Search(*(E.ptr),q)
else for each E in R
if Consistent(E, q)
add *(E.ptr) to result

Search in linear domains

\square For (totally ordered) linear domains, as in the B+-tree case, GiST specifies a more efficient extension that exploits the contiguity of leaves to solve range queries

- In particular, Search reaches the first leaf which is "consistent" with query q
After that, pointers in the linked list of leaves are used until a leaf is reached which is "inconsistent" with query q

Insert

The insertion algorithm is used to both insert new entries and re-insert "orphaned" entries, resulting from underflows For this, the input also includes the tree level where the entry should be inserted, with the understanding that leaves are at level 0

In case of overflow, we call the Split function and propagate updates towards the root

Insert

Insert(R,E,I)
Input: Tree rooted at R, entry E, level I
Output: Tree with E inserted at level I
N = ChooseSubtree(R,E,I)
if E can be inserted in N
insert E in N
else Split(R,N,E)
AdjustKeys(R,N)

ChooseSubtree

ChooseSubtree uses Penalty to recursively determine the sub-tree where E should be inserted

ChooseSubtree(R,E,I)
Input: Tree rooted at R, entry E, level I
Output: node N at level I where E should be inserted
if R is at level I return R
else choose among all entries $F=\left(p^{\prime}, p t r^{\prime}\right)$ in R the one minimizing Penalty(F,E)
return ChooseSubtree(* (F.ptr'),E,I)

Split

Split uses PickSplit to divide entries of an overflown node The parent of the overflown node is still on the call stack Split(R,N,E)
Input: \quad Tree rooted in R , node N , entry E
Output: \quad Tree with N split and E inserted
$\mathrm{P}_{1}, \mathrm{P}_{2}=\operatorname{PickSplit}(\{$ entries of N$\} \cup\{E\}$)
insert P_{1} in $\mathrm{Ne} \mathrm{P}_{2}$ in a new node N^{\prime}
$p^{\prime}=\operatorname{Union}\left(P_{2}\right), p t r^{\prime}=\& N^{\prime}, E^{\prime}=\left(p^{\prime}, p t r^{\prime}\right)$
if E^{\prime} can be inserted in Parent(N)
then insert E^{\prime} in Parent(N)
else Split(R,Parent(N), E^{\prime})
F = entry in Parent(N) with F.ptr $=\& N$
F.p $=\operatorname{Union}\left(\mathrm{P}_{1}\right)$

AdjustKeys

- AdjustKeys recomputes key values (predicates)
following an update
The algorithm recursively climbs the tree and it terminates when it reaches the root or an already accurate key value AdjustKeys(R,N)
Input: Tree rooted at R, node N
Output: Tree with N ancestors having correct and accurate key values
if $N=R$ or for entry $E=(p, p t r)$, with $p t r=\& N$, E.p = Union (\{entry of N$\}$) already holds
return
else E.p = Union(\{entry of N\}) AdjustKeys(R,Parent(N))

Delete

\square Delete keeps the tree balanced, decreasing its height if the root, when CondenseTree terminates, has a single child Delete(R,E)
Input: \quad Tree rooted at R, entry E = (p,ptr)
Output: Tree with E removed

Search(R,E.p)

if E not found return
L = node containing E, remove E from L
CondenseTree(R,L)
if R has a single entry remove R make the child of R the new GiST root node

CondenseTree

\square CondenseTree manages the re-insertion at the original level of orphaned entries from underflown nodes, kept in a set
CondenseTree(R,L)
Input: \quad Tree rooted at R and leaf L
Output: New tree
$N=L, Q=\{ \}$
if $N=R$ goto end
else $P=\operatorname{Parent}(N), E=$ entry in P: E.ptr $=\& N$
if \#\{entry of N$\}<\mathrm{k} \mathrm{M}$
$\mathrm{Q}=\mathrm{Q} \mathrm{U}$ \{entry of N$\}$, remove E from P , AdjustKeys(R,P)
if E was not removed from P AdjustKeys(R,N)
else $N=P$, restart
for each E in Q Insert($R, E, \operatorname{level}(E))$

Performance evaluation

- Up to now, we computed the search performance of a B^{+}-tree as a primary index
- In the case of a secondary index we should know
- How many leaves contain result entries

How many data pages contain result records
\square We will suppose that:
RID lists in the leaves are sorted
We will not access a data page more than once (for each key value)
Attribute values are uniformly distributed in the data file
Every value is repeated (on average) N/K times
Records are uniformly distributed in pages of the data file

Estimating the number of result pages

If we should retrieve R records in P pages
$\square 1 / P=$ probability that a record is inside a given page $1-1 / P=$ prob. that a page does not contain a record $(1-1 / P)^{R}=$ prob. that a page does not contain any record
$1-(1-1 / P)^{R}=$ prob. that a page contains at least one record
Multiplying this by the number of pages, we obtain the average number of pages to be accessed

$$
\Phi(R, P)=P\left(1-(1-1 / P)^{R}\right) \leq \min \{R, P\}
$$

Given a drawer with an infinite number of socks in P colors, how many different colors we have, in average, when R socks are taken?

Cardenas model

The model we just saw (Cardenas) assumes pages with infinite size (note that N does not appear in the formula)

This leads to an appreciable underestimation of the correct value for pages with less than about 10 record If $R=N$, the formula returns a value lower than P

$$
\Phi N, P)=P\left(1-(1-1 / P)^{N}\right) \approx P\left(1-e^{-N / P}\right)
$$

Yao model

The model by Yao takes into account the actual capacity C = N/P of pages
The model considers all possible ways for allocating the R result records in the P pages
$\binom{N}{R}=$ number of combinations

- $\binom{N-C}{R}=$ number of combinations excluding a page
$\binom{N}{R}-\binom{N-C}{R}=$ combinations including a given page
$1-\frac{\binom{N-C}{R}}{\binom{N}{R}}=\begin{gathered}\text { probability that the page contains at least } \\ \text { one record }\end{gathered}$

Formula by Yao

Multiplying by the number of pages, we obtain the average number of accessed pages

$$
\begin{aligned}
& \text { accessed pages } \\
& \Phi(R, N, C)=N P \times\left(1-\frac{\binom{N-C}{R}}{\binom{N}{R}}\right)
\end{aligned}
$$

E.g.: $N=1000, P=250$

Comparing the models

When pages contain a variable number of records, it can be proven that the formula by Yao overestimates costs

- If record allocation is not uniform, both models overestimate costs
If R is large, computing the formula by Yao could be computationally expensive

$$
\Phi(R, N, C)=N P \times\left(1-\prod_{i=1}^{R} \frac{N-C-i+1}{N-i+1}\right)
$$

Cost of index access

- Total cost $=$ index cost + data pages cost
- Index cost $=$ cost for the first leaf + cost for reading all leaves

Cost for the first leaf $=\mathrm{h}-1$
Number of leaves $=\left\lceil L^{*} E K / K\right\rceil$
Data pages cost: EK times the formula by Cardenas (or Yao)
$=E K \times \quad(N / K, P)$
This should be compared with sequential cost

$$
=P
$$

Example

File with $N=10^{6}$ records in $P=40000$ pages
Unclustered index on an attribute with $\mathrm{K}=10^{5}$ values
with $L=7045$ leaves and height $h=4$
We see that the tree height contribution is entirely irrelevant for costs

Cost for range search $A \in x, y]$

- Total cost $=$ index cost + data pages cost
\square Index cost = cost for the first leaf + cost for "sequentially" reading all leaves
- Cost for the first leaf $=\mathrm{h}-1$
- Number of leaves $=\lceil$ fs* L\rceil
- $\mathrm{fs}=$ selectivity factor of predicate $=(y-x) /(\operatorname{maxA}-\min A)$

Data pages cost: $\lceil\mathrm{fs} * \mathrm{~K}\rceil$ times the formula by Cardenas (or Yao)
$=\lceil\mathrm{fs} * \mathrm{~K}\rceil$ ($\mathrm{N} / \mathrm{K}, \mathrm{P}$) (sorting attribute)
$=\lceil\mathrm{fs} * \mathrm{P}\rceil$ (non-sorting attribute)

Hash indices

Differently from table-based techniques, where the association <key, RID> is explicitly stored, a hash-based organization uses a hash function, H , trasforming every key value into an address

Hash indices: collisions

Except for particular cases, hash functions are non-injective:

$$
\mathrm{k}_{1} \neq \mathrm{k}_{2} \nRightarrow \mathrm{H}\left(\mathrm{k}_{1}\right) \neq \mathrm{H}\left(\mathrm{k}_{2}\right)
$$

thus collisions might occur

$$
\text { If } k_{1} \text { and } k_{2} \neq k_{1} \text { collide, } H\left(k_{1}\right)=H\left(k_{2}\right)
$$

A hash function that does not generate collisions is called perfect
Every address generated by the hash function identifies
a logical page, or bucket
The number of "elements" (key values for indices, records for data organizations) that are contained in a bucket defines the capacity, C, of buckets

Hash indices: overflow

The memory composed by buckets addressable by the hash function is called primary area

- If a key is assigned to a bucket already containing C keys, the bucket overflows
Managing overflows could require, depending on the specific technique, using a separate memory area, called overflow area

Static and dynamic hash indices

A hash function should be surjective, thus able to generate P different addresses, as many as the primary area buckets
If, for a specific hash technique, the value of P is constant, the hash technique is called static

In this case, the primary area size is part of the design of the hash index
On the other hand, if the primary area can expand and contract, in order to adapt to the actual data volume, the hash technique is called dynamic

In this case, multiple hash functions are needed
The first dynamic hash techniques were proposed around the end of' 70 s , while static techniques were first developed in the '50s

Common features of hash indices

For both static and dynamic techniques, some common aspects are worth mentioning:

Choice of the actual hash function H

- Overflow management policy
- Capacity C of primary area buckets
\square Capacity C_{ov} (not necessarily equals to C) of buckets in the overflow area (if applicable)
Utilization of allocated memory
Hash techniques are usually primary (but also secondary)
Usually, hash functions do not preserve order, that is they are non-monotone

Using hash indices is not recommended in cases where range queries are possible (or frequent)

Static hashing

The figure shows a simple example of a static hash organization, where:
Keys correspond to natural numbers

- Primary area is made up of $P=5$ buckets with size $C=5$ The hash function is: $H\left(k_{i}\right)=\mathrm{k}_{\mathrm{i}} \% 5$
\square Overflows are managed by allocating, for each primary bucket, one or more overflow bucket, with size $C_{o v}=5$, linked in a list

Static hashing: cost analysis

For a hash file with N records in buckets of size $\mathrm{C}=\mathrm{C}_{\mathrm{ov}}$, whose primary area contains P buckets, under the hypothesis of a perfect distribution of records on the P addresses, it is:
every address is generated N/P times
every list contains $N /\left(P^{*} C\right)$ buckets
The search cost for a record is thus proportional to $N /\left(P^{*} C\right)$
E.g.: $N=10^{6}, C=10, P=25000$

A (successful) search accesses (on average) 2 buckets
This equals the number of I/O operations, supposing that each bucket requires a single I/O read

Hash functions

A hash function is a (surjective) transformation from the key space, K , to the address space, $\{0, \ldots, \mathrm{P}-1\}$
The hypothesis than an arbitrary subset of K would be transformed to the P different addresses in a perfectly homogeneous way is pure abstraction, not very useful for analyzing performance obtainable from different hash organizations
The ideal case that should be used to compare a specific hash function H is the one with uniform distribution on the address space, where, for every subset of K, each of the P addresses has the same probability, $1 / P$, of being generated

Hash functions: uniform distribution

In the ideal case, the number of keys, X_{j}, assigned to the j-th bucket follows a binomial distribution

$$
\operatorname{Pr}\left\{X_{j}=x_{j}\right\}=\binom{N}{x_{j}}\left(\frac{1}{P}\right)^{x_{j}}\left(1-\frac{1}{P}\right)^{N-x_{j}}
$$

with average value and variance ${ }^{2}$ given as:

$$
\mu=\frac{N}{P} \quad \sigma^{2}=\frac{N}{P}\left(1-\frac{1}{P}\right)
$$

where neither nor ${ }^{2}$ depend on the specific bucket For $P \gg 1$, the ratio $\sigma / \sqrt{ } \mu$ is almost equal to 1

Quality of a hash function

- For "real" hash functions, performance varies depending on the specific set of key values
E.g.: The function $H\left(k_{i}\right)=k_{i} \% P$ is a "good" function, but for the set of key values $\{0, \mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}, \ldots, \mathrm{N} \cdot \mathrm{P}\}$ would allocate all keys in the bucket with address 0
Every hash function, when it is chosen independently from the specific set of key values, could lead to very bad performance, in the worst case
In the "average" case, however, when arbitrary subsets of K and real data files are considered, we observe that different hash functions actually behave differently

Degeneracy

An appropriate criterion for evaluating an hash function H , with respect to a particular set ok key values, is the analysis of its degeneracy σ / V_{μ}, where:

$$
\mu=\sum_{j=0}^{P-1} \frac{x_{j}}{P}=\frac{N}{P} \quad \sigma^{2}=\sum_{j=0}^{P-1} \frac{\left(x_{j}-\mu\right)^{2}}{P}
$$

are computed over all the P buckets and x_{j} is the number of records within the j-th bucket
The lower the degeneracy, the better the behavior of the hash function

Hash functions: mid square

The key is multiplied by itself
A number of central digits equal to those of $P-1$ is extracted The so-obtained value is normalized by P

$145142^{2}=21066200164$

For example, if $P=8000$, by normalizing we obtain the address:
$\lfloor 6620 \times 0.8\rfloor=5296$

Hash functions: shifting

The key is divided into parts, each made up of a number of digits equal to those of $P-1$
Parts are then summed an the result normalized

$$
\begin{array}{r}
\text { E.g.: } P=800, k=14514387 \\
387+514+14=915
\end{array}
$$

By normalizing we obtain $\lfloor 915 \times 0.8\rfloor=732$

Hash functions: folding

The key is divided as for shifting
Parts are "folded" and summed, then the result is normalized E.g.: $P=800, k=14514387$

$$
783+514+41=1338
$$

By normalizing we obtain :
$1338 \% 800=538$
$\lfloor 538 \times 0.8\rfloor=430$

Hash functions: division

The numeric key is divided by a number Q and the address is obtained as the rest:

$$
H(k)=k \% Q
$$

- For the value of Q we have the following (empirical) advices:
Q is the highest prime number not higher than P
$\square Q$ is not prime, not higher than P, with no prime factor lower than 20
- If $\mathrm{Q}<\mathrm{P}$, we should have $\mathrm{P}=\mathrm{Q}$ in order to ensure the surjectivity of the hash function

Hash functions : division (example)

$\mathrm{P}=6997$		
$\mathrm{k}=$172146 172147 172148 172149	$H(k)=$	4218
\ldots	4219	
174924		4220
174925		4221
		6996
		0

Alphanumeric keys

The management of alphanumeric strings requires a preliminary conversion step

- Probably the most common technique is to define:

An alphabet A, where strings' characters are drawn
A bijective function ord(), associating to each alphabet element an integer value in the range $[1,|\mathrm{~A}|]$

- A conversion radix b

A string $S=S_{n-1}, \ldots, S_{i}, \ldots, S_{0}$ is then converted into a numeric key

$$
k(S)=\sum_{i=0}^{n-1} \operatorname{ord}\left(s_{i}\right) \times b^{i}
$$

Alphanumeric keys: example

Given $A=\{a, b, \ldots, z\}$, ord() with values in [1,26], and $b=32$, the string "indice" produces the value

$$
\begin{gathered}
\text { k("indice") } \\
=9 \times 32^{5}+14 \times 32^{4}+4 \times 32^{3}+9 \times 32^{2}+3 \times 32^{1}+5 \times 32^{0} \\
=316810341
\end{gathered}
$$

Simpler techniques, not using a radix, like, for example

$$
k(S)=\sum_{i=0}^{n-1} \operatorname{ord}\left(s_{i}\right)
$$

are usually worse, since they can generate the same numeric key with different strings, obtained as anagrams

Choosing the "right" radix

With the "division" technique we can have bad performance if the radix b has prime factors in common with P
E.g.: given $A=\{a, b, \ldots, z\}, b=32$, and $P=512$

The value $\mathrm{H}(\mathrm{k}(\mathrm{S}))$ is determined by the last two characters only:
"folder": ordinal values are 6, 15, 12, 4, 5, 18, k("folder") $=217,452,722, \mathrm{H}(217452722)=178$
"primer": ordinal values are $16,18,9,13,5,18$, k("primer")=556,053,682, H(556053682)=178

Choosing the "right" radix (cont.)

In order to understand the root causes of this problem, we need to comprehend the properties of the \% operator
The simplest case to consider is the one where P
is a multiple of b, that is $P=\alpha \times b$
\square A value y exists so that by $\%(\alpha \times b)=0$
\square For the \% operator the following property holds (useful for computing $k(S)$):
$H(k(S))=\left[\sum_{i=0}^{n-1} \operatorname{ord}\left(s_{i}\right) \times b^{i}\right] \%(\alpha \times b)=\left(\sum_{i=0}^{n-1}\left[\left(\operatorname{ord}\left(s_{i}\right) \times b^{i}\right) \%(\alpha \times b)\right]\right) \%(\alpha \times b)$
characters $\mathrm{s}_{\mathrm{n}-1}$ through s_{y} give a contribute $=0$ to the value of $\mathrm{H}(\mathrm{k}(\mathrm{S})$) (in the example, $\mathrm{y}=2$), thus the "useful" string is only y characters long
With radix = 26 we have problems whenever P has factors 13 and 2

Analysis of an example

The following experiment was performed by Mullin in 1991 by using, as the key dataset, all 6-char English words, on the alphabet $A=\{a, b, \ldots, z\}$, in the Unix spelling checker
The graph shows the case $b=26$ with P varying between 420 and 520

Distribution peaks are obtained for P values multiple of 13

- In particular, the maximum
is obtained for $P=507$
$=13 \times 13 \times 3$

Load factor

Given an estimate of the number N of records, and given the bucket capacity C, choosing a load factor d determines the number P of buckets in the primary area
\square We should consider that, when d decreases, the percentage of overflow records decreases as well

It is therefore not recommended using high values of the load factor
\square Common values, representing a good trade-off between memory utilization and operational costs, are included in the range $[0.7,0.8$]

Bucket capacity

Clearly, a capacity such that reading/writing a single bucket requires more than one I/O operation is not efficient

- On the other hand, it is convenient to have bucket capacity $C>1$, due to the relationship existing between the value of C and the fraction of overflow records
When increasing C, when the load factor d is constant, the fraction of overflow records decreases, under the hypothesis of an ideal hash function and a separate overflow area exists
Empirically, the result is valid also in the case of non-ideal hash functions

Optimal bucket capacity

Since increasing the number of overflow record results in poor performance, it is recommended to have maximum bucket capacity C, under the constraints:
Reading/writing a bucket should result in a single I/O operation (sequential blocks)
Transferring a bucket with capacity C should cost less than transferring two buckets with capacity lower than C

Computing the average number of overflows

The number of times that the j address is generated is a random variable with a binomial distribution, the average number of overflow in the j-th bucket is:

$$
O V_{j}(C)=\sum_{x_{j}=C+1}^{N}\left(x_{j}-C\right) \times \operatorname{Pr}\left\{X_{j}=x_{j}\right\}
$$

that does not depend on the specific bucket j
For the sake of brevity, we will write $\operatorname{Pr}(x)$ in place of $\operatorname{Pr}\left\{X_{j}=x_{j}\right\}$

Overflow distribution

The total number of overflows is obtained as:

$$
O V(C)=\sum_{j=0}^{P-1} O V_{j}(C)=P \times \sum_{x_{j}=C+1}^{N}\left(x_{j}-C\right) \times \operatorname{Pr}(x)
$$

For high values of N and P, we can approximate the binomial distribution with the Poisson distribution :

$$
\operatorname{Pr}(x)=\binom{N}{x}\left(\frac{1}{P}\right)^{x}\left(1-\frac{1}{P}\right)^{N-x} \approx\left(\frac{N}{P}\right)^{x} \frac{e^{-\frac{N}{P}}}{x!}
$$

Since $P=N /(C \times d)$:

$$
\operatorname{Pr}(x) \approx(C \times d)^{x} \frac{e^{-C \times d}}{x!}
$$

Total number of overflows

The total number of overflows is therefore obtained as :

$$
O V(C) \approx P \times \sum_{x=C+1}^{N}(x-C) \times \frac{(C \times d)^{x} e^{-(C \times d)}}{x!}
$$

By substituting the variable $\mathrm{i}=\mathrm{x}-\mathrm{C}$:
$O V(C) \approx P \times \frac{(C \times d)^{C+1} e^{-(C \times d)}}{C!} \sum_{i=1}^{N-C} \frac{i \times C^{i-1} \times d^{i-1}}{(C+1)(C+2) \ldots(C+i)}$
Again, since $P=N /(C \times d)$:

$$
O V(C) \approx N \times \frac{(C \times d)^{C} e^{-(C \times d)}}{C!} \times f(C, d)
$$

Example

Managing overflows

Techniques used to manage overflows aim to reduce the number of bucket accesses required to retrieve the searched record

Two main strategies:
Chaining

- Pointers are used
- Overflow area might be used

Open addressing

- Do not use pointers

Buckets in primary area are used to store overflow records

Chaining in primary area

Separate lists
If bucket j overflows, we insert the new record in the first nonfull bucket following j
Overflow record are linked in a list
Non-overflow record should be linked, too
\square Coalesced chaining
A single pointer is used for every bucket (not for every record) Bucket lists could be merged (coalesced)
E.g.: j overflows in $j+h$ and $j+h$ is full, both overflow in j+h+l

Examples

Separate lists

Coalesced chaining

$$
\begin{array}{ll}
\boldsymbol{k} & \boldsymbol{H}(\mathbf{k}) \\
\hline k_{1} & j \\
k_{2} & j \\
k_{3} & j \\
k_{4} & j+h \\
k_{5} & j \\
k_{6} & j+h
\end{array}
$$

The coalesced chaining technique simplifies pointers management, but performance is worse

Chaining in overflow area

As said, the capacity of overflow area buckets C_{ov} could differ from the one of primary area buckets C

- Usually, C_{ov} < C to avoid wasting storage in case of reduced overflows
- For the same reason, we could use coalesced lists

Clearly, in case a overflow bucket overflows, we would obtain an overflow bucket list

Open addressing

In open addressing techniques, every key value k_{i} is associated to a sequence of addresses
$\mathrm{H}_{0}\left(\mathrm{k}_{\mathrm{i}}\right), \mathrm{H}_{1}\left(\mathrm{k}_{\mathrm{i}}\right), \ldots, \mathrm{H}_{\mathrm{l}}\left(\mathrm{k}_{\mathrm{i}}\right)$, with $\mathrm{H}_{0}\left(\mathrm{k}_{\mathrm{i}}\right)=\mathrm{H}\left(\mathrm{k}_{\mathrm{i}}\right)$
When k_{i} is inserted, we test all addresses $\mathrm{H}_{0}\left(\mathrm{k}_{\mathrm{i}}\right), \mathrm{H}_{1}\left(\mathrm{k}_{\mathrm{i}}\right), \ldots, \mathrm{H}_{\mathrm{l}}\left(\mathrm{k}_{\mathrm{i}}\right)$ until the address of a non-full bucket is found

Open addressing: searching

To search for k_{i} we should look into all buckets with address $H_{0}\left(k_{i}\right), H_{1}\left(k_{i}\right), \ldots, H_{1}\left(k_{i}\right)$ until

- Either we find k_{i} (successful search)

Or we find a non-full bucket (unsuccessful search)
\square With open addressing techniques, we should be very careful how we delete records

If a record of a full record is deleted, the bucket becomes non-full, thus it "stops" the search

Open addressing: deleting records

The location of a deleted record is thus marked as "non occupied", and it can be "occupied" (re-used) when new records are inserted
A bucket is full if and only if all its locations are "occupied"

Linear probing

At each step the address is increased by a constant value s

- $H_{j}\left(k_{i}\right)=\left(H_{j-1}\left(k_{i}\right)+s\right) \% P$

Thus: $\mathrm{H}_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{i}}\right)=\left(\mathrm{H}\left(\mathrm{k}_{\mathrm{i}}\right)+\mathrm{s} \times \mathrm{j}\right) \% \mathrm{P}$
\square To make sure that all addresses can be generated, we need to ensure that s and P have no common factors

Otherwise, only $\mathrm{P} / \mathrm{MCD}(\mathrm{P}, \mathrm{s})$ can be generated
E.g.: $P=10, s=4, \operatorname{MCD}(10,4)=2$

Addresses for $k_{i}=3$ are $3,7,1,5,9,3, \ldots$

Primary clustering

If bucket j overflows, it is likely that bucket j+s overflows, thus that bucket $\mathrm{j}+2 \mathrm{~s}$ overflows...

There is a clustering of records in some of the pages
E.g.: $P=31, s=3$, the following addresses are generated:

- $1234 \rightarrow 25,28,0,3,6,9,12, \ldots$
- $245 \rightarrow 28,0,3,6,9,12,15, \ldots$

The problem is due to the linearity of the probing step s

Quadratic probing

At each step the address is increased by a linear value
$a+b(2 j-1)$

- $H_{j}\left(k_{i}\right)=\left(H_{j-1}\left(k_{i}\right)+a+b(2 j-1)\right) \% P$

Thus: $H_{j}\left(\mathrm{k}_{\mathrm{i}}\right)=\left(\mathrm{H}\left(\mathrm{k}_{\mathrm{i}}\right)+\mathrm{axj}+\mathrm{bx} \mathrm{j}^{2}\right) \% \mathrm{P}$
E.g.: $P=31, a=3, b=5$, the following addresses are generated:

- $1234 \rightarrow 25,2,20,17,24,6, \ldots$
- $245 \rightarrow 28,5,23,20,27,13, \ldots$

Thus lists are not coalescing (e.g., see 20)
The problem of secondary clustering remains, due to keys conflicting for the first address

Double hashing

We try to avoid the secondary clustering problem by using two hash functions, H^{\prime} and $\mathrm{H}^{\prime \prime}$
Address sequences are given by :

$$
\begin{aligned}
& H_{0}\left(k_{i}\right)=H^{\prime}\left(k_{i}\right) \\
& H_{j}\left(k_{i}\right)=\left(H_{j-1}\left(k_{i}\right)+H^{\prime \prime}\left(k_{i}\right)\right) \% P \quad(\text { if } j>0)
\end{aligned}
$$

Two keys generate the same sequence if and only if they collide on both H^{\prime} and $\mathrm{H}^{\prime \prime}$

Double hashing: comments

The double hashing techniques has the collateral effect of producing a high variability of generated addresses, depending on the value of $\mathrm{H}^{\prime \prime}\left(\mathrm{k}_{\mathrm{i}}\right)$

- Considering the actual allocation of buckets in secondary storage this could this can significantly weigh down I/O operations
- Subsequent buckets are "far away" from each other, increasing latency Double hashing approximates well enough the ideal case of "uniform hash" (random probing), where at the j-th step each address has the same probability of being generated

Comparing different techniques

Techniques not using overflow area have a storage utilization u equal to d

With overflow buckets, we obtain:

$$
u=\frac{N}{P \times C+P_{o v} \times C_{o v}}
$$

Search performance

Coalesced chaining
Successful search:

$$
\begin{aligned}
& E \approx 1+\frac{1}{8 d}\left(e^{2 d}-1-2 d\right)+\frac{d}{4} \\
& A \approx 1+\frac{1}{4}\left(e^{2 d}-1-2 d\right)
\end{aligned}
$$

- Separate chaining with overflow area
Successful search:
$E \approx 1+\mathrm{d} / 2$
Unsuccessful search:
$A \approx e^{-d}+d$

Performance: open addressing

- Random probing: unsuccessful search

With buckets with capacity 1 , search cost equals the number of buckets needed to insert a new record
Probability of failure at each bucket equals d
Probability of having found $r-1$ occupied buckets $\operatorname{Pr}\{$ costo $=r\}$ thus equals (1-d) $\mathrm{d}^{\mathrm{r}-1}$
Distribution is geometric with average value $d /(1-d)$
Average cost for unsuccessful search is thus:
A = d/(1-d)+1 = 1/(1-d)

Performance: open addressing

Random probing: successful search
Average number of accesses equals the average cost for inserting all records

$$
E \approx \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{1-i / P}=\frac{P}{N} \sum_{i=0}^{N-1} \frac{1}{P-i}
$$

The sum can be rewritten as the difference of two armonic sums

$$
E \approx \frac{P}{N}\left(\sum_{i=1}^{P} \frac{1}{i}-\sum_{i=1}^{P-N} \frac{1}{i}\right)
$$

Performance: open addressing

Random probing: successful search
We have: $\sum_{i=1}^{N} \frac{1}{i}=\log (n)+\operatorname{cost}+O\left(n^{-1}\right)$

Therefore:

$$
E \approx \frac{P}{N} \log \left(\frac{P}{P-N}\right)=\frac{P}{N} \log \left(\frac{1}{1-d}\right)=-\frac{P}{N} \log (1-d)
$$

Performance: open addressing

Linear probing
Successful search:
Unsuccessful search: $A \approx \frac{1}{2}\left(1+\frac{1}{(1-d)^{2}}\right)$
If the bucket capacity C increases, performance of open addressing techniques improve, since:

- $A(C)=1+(A(C=1)-1) / C$
- $E(C)=1+(E(C=1)-1) / C$

Comparison

- Successful search

Unsuccessful search

Problems for static organizations

Storage should be allocated during the initial design
If storage is overestimated, it is poorly used
If storage is underestimated, a high load factor follows, thus costs increase
Moreover, if buckets overflow in primary area, we have the constraint $d \leq 1$

Dynamic Hashing

These techniques adapt the allocation of primary area according to the actual number of records
They are divided in
With directory
Virtual hashing

- Dynamic hashing

Extendible hashing
Without directory

- Linear hashing

Spiral hashing

Virtual hashing

The basic idea of Virtual hashing (Litwin '78) is doubling the primary area whenever a bucket overflows
Records are distributed between the overflown bucket and its "buddy", by using a new hash function

- In practice, we "split" the overflown bucket

Virtual hashing: using buddies

If, afterwards, another bucket in the original primary area overflows, and its buddy is still unused, its record records are distributed between the bucket and its buddy

\square

Virtual hashing: directory

Since, in a given moment, only some of the buddies are actually used, an auxiliary structure is needed to determine which hash function should be used

In practice, a bit vector V is used, where $\mathrm{V}[\mathrm{i}]=1$ if and only if the corresponding bucket is used

Virtual hashing: initializing primary area

- P_{0} buckets with capacity C are allocated

An hash function H_{0} with values in $\left[0, P_{0}-1\right]$ is used

- We set $\mathrm{l}=0$ (number of doublings)

A binary vector V is created, with length P_{0}, and all its elements are set to 1
After I doublings, the primary area contains $\mathrm{P}=2^{\prime} \mathrm{P}_{0}$ buckets, and the buddy of the j-th bucket ($0 \leq \mathrm{j} \leq 2^{1-1} \mathrm{P}_{0}-1$) is the bucket with address $\mathrm{j}+2^{l-1} \mathrm{P}_{0}$

Virtual hashing: splitting bucket j

If $\mid=0$, or $\mid>0$ but the buddy of j is already used or does not exist ($1>0$, but $V\left[j+2^{\mid-1} P_{0}\right]=1$ or $j \geq 2^{1-1} P_{0}-1$)
I++, the primary area and the vector V are doubled
New elements of V equal 0 , except for $V\left[j+2^{1-1} P_{0}\right]=1$
The new hash function H_{1} is used, with values in $\left[0,2^{\prime} P_{0}-1\right]$
Keys of bucket j are re-distributed using H_{\mid}
\square If the buddy of j exists and is not used $\left(V\left[j+2^{1-1} P_{0}\right]=0\right)$
$\mathrm{V}\left[j+2^{1-1} \mathrm{P}_{0}\right]=1$
Keys of bucket j are re-distributed using $\mathrm{H}_{\text {I }}$

Virtual hashing: example (i)

- $\mathrm{P}_{0}=7, \mathrm{C}=3$

112	
1176	
	512 3270 841 l

723

We use the family of hash functions
$H_{1}(k)=k \%\left(2^{\prime} P_{0}\right)$
6851

| 7830 |
| :--- | :--- | :--- |
| 1075 |
| 6647 | | 2840 |
| :--- | :--- |
| 2665 |
| 2385 |

\mathbf{V}
1
1
1
1
1
1
1

We insert the key k=3820
$\mathrm{H}_{0}(3820)=5$
Bucket 5 overflows

Virtual hashing: example (ii)

Virtual hashing: example (iii)

$\mathrm{P}_{1}=14$						
112 1176	512 3270 841	723	6851	7830	2665 2385	286
				1075 6647 3343	3820 2840	

- If we have to insert 3343, we have $H_{1}(3343)=11$
- Since $\mathrm{V}[11]=0$, we should apply $\mathrm{H}_{0}(3343)=4$
\square Bucket 4 overflows and is splitted In this case without doubling the primary area V[11]=1 and keys are re-distributed

\mathbf{V}
1
1
1
1
1
1
1
1
0
0
0
0
1
1
0

And if we should insert 5485?

Virtual hashing: search (and insert)

In order to search for a key value we need t know which hash function was used when it was inserted
\square Vector V is what we need
The following method returns the address of the bucket where the searched key could be (or where the new key should be inserted)
Address(k, I)
Input: key k, level I
Output: Address of bucket at level I where k can be found
if $(l<0)$ the key does not exist
else if $\mathrm{V}\left[\mathrm{H}_{\mathrm{\prime}}(\mathrm{k})\right]=1$ return $\mathrm{H}_{\mathrm{l}}(\mathrm{k})$
else return Address(k, l-1)

Virtual hashing: hash functions

Virtual hashing requires a series of hash functions $\mathrm{H}_{0}, \mathrm{H}_{1}, \ldots, \mathrm{H}_{\text {}}$,
... satisfying the following properties:
Range condition: function H_{1} should have values
in [0, $\left.2^{2} P_{0}-1\right]$
Split condition: for each $1>0$, for each k, and for each value of $H_{l}(k)$, the following should hold:

$$
H_{l}(k)=H_{l-1}(k) \text { otherwise } H_{l}(k)=H_{l-1}(k)+2^{l-1} P_{0}
$$

that is, when a bucket is split its keys can only generate either the bucket address, or the one of its buddy
The family of functions $H_{l}(k)=k \%\left(2^{\prime} P_{0}\right)$
satisfies both conditions

Dynamic hashing

Dynamic hashing (Larson '78) avoids doubling the whole primary area (which limits the storage utilization and slows down the organization during doubling), by using an auxiliary structure (directory) organized as a binary trie

- The basic idea (used also by extendible hashing) is to use a hash function that, given the key k, returns not an address, rather a binary pseudo-key $H(k)=b_{0}, b_{1}, b_{2}, \ldots$
The ideal case is the one where the set of pseudo-keys is such that $\operatorname{Pr}\left\{b_{i}=1\right\}=1 / 2$, that is, a balanced partition is obtained for each considered index
- A simple technique to generate pseudo-keys is to use k as the seed of a pseudo-random binary generator

Dynamic hashing: using the trie

\square The trie is used to drive the search, and its leaves contain addresses of primary area buckets
\square To search for (or to insert) a key we descend the trie corresponding to the generated pseudo-key, until a leaf is reached

Example: bucket 1 contains all key values whose pseudo-key is $0 . .$. and bucket 2 all those with pseudo-key $1 \ldots$

Primary area

Dynamic hashing: overflow

Expansion of primary area is performed by adding a single bucket at the time, re-distributing records between the overflown bucket and its buddy, and adding a node to the trie

Example: we have to split bucket 2

Bucket 2 now contains all keys whose pseudo-key

Primary area is $10 \ldots$, and bucket 3 those with 11...

Dynamic hashing: performance

If the trie is in main memory, a single access is sufficient to retrieve a record

- If the trie is not in main memory, performance depend on the trie balancing, in terms of number of trie nodes to retrieve
- In the worst case, performance is not so good

Depending on the pseudo-key set, inserting a new record could lead to multiple splits
After deleting a record in a bucket, if the number of records in that bucket is lower than the capacity C, buckets are merged, and a leaf is deleted from the trie
\square Average storage utilization is about 70\%

Dynamic hashing: variant

We initially allocate P buckets and use any static hash function H_{0}

- When a overflow occurs, we generate P tries, whose root nodes are addressed by H_{0}

Extendible hashing

It is quite similar to dynamic hashing, the main difference being the directory management (Fagin et al., '79)
\square No more than two I/O accesses are guaranteed
\square Directory consists in $2^{\text {p }}$ cells with addresses [0,2 $2^{\text {p }}-1$]
$p \geq 0$ is called directory depth
A hash function associates to each key a binary pseudo-key, $H(k)=. . . b_{2}, b_{1}, b_{0}$, for which only the p least-significant bits are used to directly access one of the 2^{p} directory cells, each containing a pointer to a bucket

Extendible hashing: bucket depth

Every bucket has a local depth $p^{\prime} \leq p$ (value stored in the bucket), indicating the actual number of bits used to allocate keys within the bucket itself
Example: the bucket containing key 258 (...001) has p'=2, thus it contains keys with pseudo-key both like ... 001 and ... 101

Extendible hashing: splitting a bucket

Initially, as single bucket exists with $p^{\prime}=0$ and $p=0$
If a bucket has to be split with local depth p^{\prime}, 2 cases are possible:

$$
\begin{aligned}
& \mathrm{p}^{\prime}<\mathrm{p} \\
& \mathrm{p}^{\prime}=\mathrm{p}
\end{aligned}
$$

Extendible hashing: splitting a bucket with $p^{\prime}<p$

A new bucket is allocated and keys are distributed between the two buckets using the ($p^{\prime}+1$)-th bit of pseudo-keys

For both buckets we set local depth at $p^{\prime}+1$
Since $p^{\prime}<p$, at least a cell exists where the address of the new bucket can be arranged

We update the pointer of the cell(s)

Example: splitting a un bucket with $p^{\prime}<p$

Extendible hashing: splitting a bucket with $\mathrm{p}^{\prime}=\mathrm{p}$

Since $p^{\prime}=p$, no cell exists to contain the address of the new bucket (obtained from splitting the overflown bucket)
\square We double the directory, increasing p by 1
\square We copy pointers in the new cells (second half of the directory)
We perform split as when $\mathrm{p}^{\prime}<\mathrm{p}$

Example: splitting a un bucket with $p^{\prime}=p$

Extendible hashing: deletion

- If a record is deleted in a bucket with depth p^{\prime}, and the number of records in the bucket and in its buddy is not higher than the capacity C , buckets are merged

The local depth of the resulting bucket is $p^{\prime}-1$
\square If the only buckets at depth $p^{\prime}=p$ are merged, it is possible to contract the directory, halving it

Since testing that no bucket exists with local depth p requires, in the worst case, to read all the buckets, it is appropriate using a local depth table which, for every value $\mathrm{p}^{\prime} \leq \mathrm{p}$, stores the number, $\mathrm{P}\left(\mathrm{p}^{\prime}\right)$, of buckets having depth p^{\prime}

Example: directory halving

Extendible hashing: comments

Every doubling affects the whole directory
Problems in case of concurrent operations
A solution exploits a multi-level directory
The index is no longer binary

Linear hashing

- Linear expansion technique

"We do not split the overflown bucket, rather we split another bucket, chosen according to a specific criterion"

No directory is required
We have to manage overflows (in primary or separate area) Primary area grows "linearly"
\square In the case of linear hashing, the bucket to be split is the one following the last split bucket

Linear hashing: management of primary area

Initially, P_{0} buckets are allocated and we use the hash function $H_{0}(k)=k \% P_{0}$
We keep a pointer (split pointer, SP) to the next bucket to be split

Initially, SP = 0
\square In case of an overflow
We add a new bucket with address $P_{0}+S P$
We re-distribute records in SP (including those that may be in overflow area) by using the new hash function
$\mathrm{H}_{1}(\mathrm{k})=\mathrm{k} \%\left(2 \mathrm{P}_{0}\right)$

- We increase SP by 1

Linear hashing: doubling the primary area

After P_{0} overflows, we have a complete expansion of primary area, since the number of buckets is now $2 \mathrm{P}_{0}$
We prepare for a new expansion, setting $\mathrm{SP}=0, \mathrm{H}_{0}(\mathrm{k})=\mathrm{H}_{1}(\mathrm{k})$, and $\mathrm{H}_{1}(\mathrm{k})=\mathrm{k} \%\left(2^{2} \mathrm{P}_{0}\right)$

- During the j-th expansion we use the hash functions $H_{0}(k)=k \%\left(2^{j-1} P_{0}\right)$ and $H_{1}(k)=k \%\left(2^{j} P_{0}\right)$
The address of the home bucket for a key is $H_{0}(k)$ if $H_{0}(k) \geq S P$, $\mathrm{H}_{1}(\mathrm{k})$ otherwise

Linear hashing: example(i)

- $P_{0}=7, C=3, C_{\text {ov }}=2, S P=2$

The overflow of buckets 2 e 3 caused the split of buckets 0 and 1

- Inserting the key $3820\left(\mathrm{H}_{0}(3820)=5\right)$ bucket 5 overflows We split bucket 2

Linear hashing: example (ii)

- $P_{0}=7, C=3, C_{o v}=2, S P=3$

Allocation of bucket 9 caused the deletion of an overflow bucket

The next overflow would split bucket 3
After 7 split the primary area is doubled and we restart from $\mathrm{SP}=0$

Linear hashing: pros and cons

+ The lack of a directory and the management of splits make implementing the structure very easy
+ Management of primary area (expansion and contraction) is immediate, since buckets are always added (and removed) at the end
- Storage utilization is rather low (variable between 0.5 and 0.7)
- Management of overflow area introduces problems similar to the ones of a static organization
- Overflow chains of high-address, not yet split, buckets can be very long

Linear hashing: storage utilization

A variant, improving storage utilization, does not split a bucket if this does not reach a minimum utilization $u_{\text {min }}$

Linear hashing: performance

When storage utilization increases, search costs increase as well, since overflow records increase

- Successful search costs

Linear hashing: overflow capacity

\square Increasing $C_{o v}$ reduces the length of overflow chains
Search cost reduces as well
\square Beyond a given point, we only waste storage

Recursive linear hashing

- Principal characteristic of Recursive linear hashing (Ramamohanarao \& Sacks-Davis, '84) is the management of overflow area, dynamically organized using Linear hashing Different levels of dynamic hash files are created (on average, no more than 3), with the file at level h ($\mathrm{h}=0$ primary area) storing its overflow records into the file at level $\mathrm{h}+1$
At level h we keep the split pointer $S P_{h}$

Recursive linear hashing: operations

\square Insertion:
We compute the address $\mathrm{H}^{0}(\mathrm{k})$
If the bucket overflows, we move to level 1 using function $\mathrm{H}^{1}(k)$
If also the bucket at level L overflows, we add a new level

- Split:

When the j-th bucket at level h is split, records to distribute are those of j-th bucket and those in overflow, which are contained in buckets at levels (h+1), ..., L

Recursive linear hashing: search

Searching for a key could require a number of disk accesses equal to the number of levels
h = 0;
while ($\mathrm{h} \leq \mathrm{L}$)
if $\left(\mathrm{H}^{\mathrm{h}}{ }_{0}(\mathrm{k})<\mathrm{SP}_{\mathrm{h}}\right)$ Address $=\mathrm{H}^{\mathrm{h}}{ }_{1}(\mathrm{k})$;
else Address $=H^{h}{ }_{0}(k)$;
if EXISTS(k, Address, h) return true;
else if FULL(Address, h) h++;
else return false;

Recursive linear hashing: addressing

Overflows at level h are stored using as the new "key" the address of the bucket at level h itself

Allocation is not performed using the key value, k, otherwise, when a bucket is split, we would not know where its overflow records are stored

Recursive linear hashing: example

- $P_{0}=5, P_{1}=3, P_{2}=2, C=2$

10							
90	21 111	312 42	48 93	39 114	25 75		
46							
56							127
:---							
247		$h=0$					
:---							
$S P_{0}=3$							

$\left.$| 20 |
| ---: | ---: | ---: |
| 76 | | 101 |
| ---: |
| 77 | | 32 |
| ---: |
| 85 | \right\rvert\, | 103 |
| :--- |
| 34 |

$h=1$
$S P_{1}=2$

54		
100	97	105

$$
S P_{2}=1
$$

\square Overflow records of bucket 5 at level 0 are stored in bucket 5\%3=2 at level 1 (together with those of bucket 2)
\square Overflow records of that bucket are stored at level 2 in bucket $2 \% 4=2$

Spiral hashing

With Linear hashing there is a higher chance that buckets yet-unsplit during current expansion will

In fact, using an uniform hash function means that every value of $H_{0}(k)$ is equi-probable, but buckets for which $H_{0}(k)<S P$
have been already split
Lo Spiral hashing (Martin, '79) tries to solve this issue by exploiting an exponential function, allowing to store records more densely in the initial portion of primary area
The name of this organization derives from the fact that the storage area is considered as a spiral, rather than a line, and the primary area is a revolution of that spiral, univocally defined by an angle z

Spiral hashing: intuition

Primary area expands with a growth factor w

The higher w, the quicker the growth of primary area

- Primary area lies along a revolution of the spiral
- The number of pages in the primary area is
$P=\left\lfloor w^{2+1}\right\rfloor-\left\lfloor w^{2}\right\rfloor$
- The value of z is increased at each expansion
- Initially, $\mathrm{z}=0 \quad(\mathrm{P}=1)$

Spiral hashing: logical addresses (i)

Let $\mathrm{H}(\mathrm{k})$ be a hash function with values in [0,1[
The "direction" of a key k is given by function
$\mathrm{X}(\mathrm{k}, \mathrm{z})=\lceil\mathrm{z}-\mathrm{H}(\mathrm{k})\rceil+\mathrm{H}(\mathrm{k})$
with values in $[z, z+1[$ and discontinuous in $z-\lfloor z\rfloor$

Spiral hashing: logical addresses (ii)

The logical address of k is given by the exponential function $m=\left\lfloor w^{x(k, z)}\right\rfloor$

Minimum value $\left\lfloor w^{2}\right\rfloor$
Maxnimum value $\left\lfloor w^{2+1}\right\rfloor-1$
The relative address is
$m_{r}=\left\lfloor w^{x(k, z)}\right\rfloor\left\lfloor w^{z}\right\rfloor$

Spiral hashing: proprieties of addresses

If the function $\mathrm{H}(\mathrm{k})$ is uniform, keys are distributed uniformly in $[z, z+1$ [
The exponential behavior allows pages with small addresses to receive more reocrds than pages with high addresses

Inversely depends on the graph slope
Expansion of primary area is performed, as for linear hashing, "removing" records from the first bucket and moving them to a new bucket created at the end of the file

Spiral hashing: split

We always split the bucket with lowest address

Actually, the address of the overflown bucket is no longer generated

- Records of bucket $\left\lfloor w^{2}\right\rfloor$ are moved in new buckets created at the end of the file

Value of the angle is thus increased from z to z^{\prime}

Spiral hashing: new value of z

The value of z^{\prime} should guarantee that $\left[w^{2}\right]$ is no longer generated: $\left\lfloor w^{z^{\prime}}\right\rfloor=\left\lfloor w^{2}\right\rfloor+1$
Thus: $z^{\prime}=\log _{w}\left(\left\lfloor w^{2}\right\rfloor+1\right)$
Therefore, the number of added buckets is:

$$
\left\lceil\mathrm{w}^{z^{2}+1}\right\rceil-\left\lceil\mathrm{w}^{2^{\prime}+1}\right\rceil=\left\lceil\mathrm{w}\left(\mathrm{w}^{\left.z^{\prime}+1\right)}\right\rceil-\left\lceil\mathrm{w} \cdot \mathrm{w}^{2}\right\rceil\right.
$$

that is, $\lceil w\rceil$ or $\lfloor w\rfloor$ depending on the value of z
Thus, $w-1$ determines the growth of primary area

Spiral hashing: example

With $\mathrm{w}=2$ and $\mathrm{z}=0$, we obtain:

$$
1 \quad z=0,\left[\lceil 20\rceil,\left\lceil 2^{0+1}\right\rceil-1\right]
$$

Spiral hashing: expansion

\square Function $X(k, z)$ guarantees that logical addresses of keys in buckets other than the first are not modified

- In fact, $X(k, z)$ and $X\left(k, z^{\prime}\right)$ only differ for those keys having $H(k) \in z-\lfloor z\rfloor, z^{\prime}-\left\lfloor z^{\prime}\right\rfloor[$, that is, between the two discontinuity points
Since $z^{\prime}=\log _{w}\left(\left\lfloor w^{2}\right\rfloor+1\right)$, such keys are only those with logical address $\left\lfloor w^{z}\right\rfloor$

Spiral hashing: physical addresses

Deleting the first bucket in the file poses the problem of reusing such pages

- It is therefore required to "map" logical addresses m into physical addresses ph(m)
\square The basic schema is the following:
Numbering starts at 0
The first added bucket replaces the one deleted at the beginning Other buckets are added at the end

Spiral hashing: allocation example

With $w=3$ e $z=0$, we obtain:

$$
\begin{aligned}
& 1 \quad 2 \quad\left[\left\lceil 3^{0}\right\rceil,\left\lceil 3^{0+1}\right\rceil-1\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\left\lceil 3^{\log _{3} 4}\right\rceil,\left\lceil 3^{\log _{3} 4+1}\right\rceil-1\right]}
\end{aligned}
$$

Spiral hashing: converting addresses

Let $\mathrm{l}=\lfloor(\mathrm{m}-1) / \mathrm{w}\rfloor$ and $\mathrm{h}=\lfloor\mathrm{m} / \mathrm{w}\rfloor$, $\mathrm{ph}(\mathrm{m})$ equals:
$\mathrm{ph}(\mathrm{h})$, if l <h
m -h -1, otherwise

- In the previous example, for bucket 6 we have:

$$
\mid=\lfloor 5 / 3\rfloor=1, h=\lfloor 6 / 3\rfloor=2
$$

Therefore, we need to compute $\mathrm{ph}(2)$ such that:

$$
1=\lfloor 1 / 3\rfloor=0, h=\lfloor 2 / 3\rfloor=0
$$

Thus, ph(6)=ph(2)=2-0-1=1
For bucket 7 , on the other hand: $\mathrm{I}=2, \mathrm{~h}=2$, thus $\mathrm{ph}(7)=7-2-1=4$

Spiral hashing: performance (i)

- The main advantage of spiral hashing is the clear reduction of oscillatory phenomena of linear hashing
- $w=2, C=10, C_{o v}=3$

Spiral hashing: performance (ii)

With controlled splits, increasing w increases search costs With uncontrolled splits, this does not happen, but storage utilization is reduced
$\square \mathrm{C}=10, \mathrm{C}_{\mathrm{ov}}=3, \mathrm{R}=15000$

