
Index Structures 

Tecnologie delle Basi di Dati M 



Cons of file organizations 

Heap and sequential organizations have clear pros: 
For heap, inserting is very quick 

For sequential, all operations are quick enough 

Both have their cons, however: 
For heap, searching is very slow 

For sequential, searching is efficient (more or less) 
only if it is performed on the sort attribute 
(moreover, periodic re-organizations are a must) 
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Index structures 

They are auxiliary structures designed to speed up the search 
for records satisfying a given boolean predicate 

Data are stored within heap or sequential files 

Every index speeds up the search for a different predicate 
(search key) 

They are (in practice) a collection of pairs <key, RID> (entry) 

The goal of the index is to speed up the retrieval of those 
entries having a key value that satisfies the predicate 

Pro: entries are (much) smaller than records 
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Access paths 

Building indices on a relation provides alternative ways (access 
paths) to quickly locate data of interest 

We commonly use the term (search) key (value) to indicate the 
value of an attribute used to select records (e.g., B is a key)  
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Indices: basic principle 

From the logical point of view, an index can be seen as a  
set of pairs (entries) (ki,pi), where:  

ki is a key value of the attribute  
on which the index is built 

pi is a pointer to the record(s) with search key value ki  
In a DBMS, it is a RID or, at least, a PID 

The advantage of using an index comes from thefact that the 
key is just a (small) part of the information in a record 

Therefore, the index is typically smaller than the data file 

Indices differ in the way they organize the set of pairs (ki,pi) 
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Index access: general schema 

Let us consider an index built on a primary key 
used to search for the record having key ki 

The steps to be performed are: 
1. Accessing the index 

2. Searching for the pair (ki, pi) 

3. Accessing the data page pointed by pi 
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Index types 

Different types of indices exist 
The first distinction is between 

Sorted indices: key values ki are kept sorted,  
so that they can be accessed in a quicker way 

Hash indices: a hash function is used to find out  
the location of entries with key value ki 

Such indices are not well suited for range searches 
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Indices: terminology 

Clustered vs. unclustered 

Primary vs. secondary 

Single-level vs. multi-level 

Dense vs. sparse 
 

Such terminology is not standard,  
for example, someone calls primary what we call clustered  
and secondary what we call unclustered 
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Clustered vs. unclustered indices 

We say that the index is clustered if it is built on the same 
attribute used to sort records in the data file, otherwise we say 
that is unclustered 

Clearly, we can build at most one clustered index for each 
relation, while we can build an arbitrary number of unclustered 
indices 
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Primary vs. secondary indices 

We say that the index is primary if it is built  
on a unique attribute (candidate key),  
otherwise it is called secondary 
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Secondary indices with pointers lists 

To avoid repeating key values, the most commonly 
used solution for secondary indices consists in 
grouping all entries sharing the same key value  
in a pointers list 
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Dense vs. sparse indices 

In dense indices the number of pointers equals the number of 
records in the data file 

In sparse indices this is lower (usually, on for each data page) 

This technique is applicable only to clustered indices 
(why?) 
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Single-level vs. multi-level indices 

All previous examples included single-level (or “flat”) indices 

However, we can “index the index” using a (sparse!) index, and 
so on (recursively), creating a multi-level structure (tree) 
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Example (1) 
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160240600 ………………… ……….. ……….. 

160240623 ………………… ……….. ……….. 
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…… 

Data file 

primary clustered sparse single-level index 

Index 



Example (2)  

 

 

 

 

 

 

 

 

 

 

160229323 BNCGRG78L21A944K Bianchi Giorgio 

160235467 RSSNNA78A53A944V Rossi Anna 

160239654 VRDMRC79H20F839X Verdi Marco 

160239980 VRDMRT78L66A944K Verdone Marta 

160240467 ………………… Alessandri Maria 

160240532 ………………… Bianchini Carlo 

160240576 ………………… Rossi Demetrio 

160240600 ………………… Bianchi Arrigo 

160240623 ………………… Verdi Remo 

Alessandri 

Bianchi 

Bianchini 

data pages 
secondary unclustered dense single-level index 

RID list 

………………… ………………… ………………… …………………  
… … …  

Rossi 

….. 

…… 

Verdi 

Verdone 

…… … 

N.B. the list can be implemented as: 

…. …. 
key value 

pointer to a 
pointers page 

record pointers 
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Index specification in SQL 

In SQL, we can define indices by way of the 
CREATE INDEX statement  
(this is not standard!) 

In DB2: 
 

 CREATE INDEX VotoIDX  -- secondary unclustered index 

 ON Esami(Voto DESC)  -- ASC is the default 

 

 CREATE UNIQUE INDEX MatrIDX -- primary unclustered index 

 ON Studenti(Matricola) 

 

 CREATE INDEX VotoIDX  -- clustered index 

 ON Esami(Voto DESC) CLUSTER  

 

 CREATE INDEX Anagrafica -- multi-attribute index 

 ON Persone(Cognome,Nome) 
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Multi-level indices 

For efficiency reasons, usually indices are multi-level (trees) 

Can we “adapt” to secondary memory search trees meant for 
main memory? 

Requisites: 
Balancing (worst case performance) 

Pagination (we are using disk) 

Minimal page utilization (size) 

Updating efficiency 
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Paginating trees (i) 

Trees for main memory (AVL trees, red-black trees)  
are typically binary trees 

Very large number of nodes 
Visiting the tree requires several accesses 

We should pack several nodes in a single page 
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Paginating trees(ii) 

Cons: 
Complication of the balancing algorithm (inefficient during 
updates) 

No guarantee on the minimum page utilization 

We should find a specific solution! 
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B-tree (R. Bayer & E. McCreight, 1972) 

Tree-shaped data structure that keeps sorted data and 
balances nodes allowing insert, deletion, and search operations 
in logarithmically amortized time 

Etymology (D. Comer): 
Balanced? 

Broad? 

Bushy? 

Boeing? 

Bayer? 

“What really lives to say is: the more you think about what  
the B in B-trees means, the better you understand B-trees.”  
(E. McCreight, 2013) 
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B-tree: terminology 

A B-tree is a multi-way perfectly balanced tree where 
nodes correspond to data pages 

Every node contains a number m of entries that can 
vary in the range d – 2d (d = order of the tree) 

The number of children nodes of each node equals 
m+1 (thus it can vary in the range d+1 – 2d+1) 

High fan-out, thus limited height 

(Very) low search cost 

Limited size 

The root node is allowed to violate the minimum 
utilization constraint, thus having a single entry 
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B-tree: features 

Perfect balancing means that every path from the root 
to any leaf has the same length (height of the tree) 

The search algorithm follows a single path from the 
root to a single leaf (cost ≤ height) 

Perfect balancing is guaranteed by algorithms for 
inserting and deleting records 

In order to guarantee balancing,  
node-branching operations are performed 
towards the root (not towards the leaves) 

Minimum occupation of 50%  
(except for the root node) 

Typical occupation > 66% 
22 



B-tree: format of internal nodes 

Internal nodes have the following format,  
where: k1 < k2 < … < km 
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(k1, r1) (k2, r2) … (ki, ri) (ki+1, ri+1) (km, rm)        

< k1 

 > k1 

< k2 

… 

 > ki 

< ki+1 

> km 



B-tree: format of leaf nodes 

Leaf nodes have the following format, where: k1 < k2 < … < km 

 

 

Since no pointers (to sub-trees) exist,  
typically leaf nodes can store more entries than internal nodes 
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(k1, r1) (k2, r2) … (ki, ri) (ki+1, ri+1) (km, rm)  … 



Example of B-tree 

This is an example of an order 1 B-tree: 
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B-tree: search 

The algorithm starts by visiting the tree root 
Usually, this is kept in main memory 

We look for the search key k within current node entries 
If such an entry exist, found 

If such entry does not exist and we are in a leaf, not found 

If such entry does not exist and we are in an internal node, 
replace the current node with its i-th children node,  
where: ki-1 < k < ki 
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B-tree: search example 

We search for the key 40 
40<100 => we follow the left child 

40>30 => we follow the right child 

 

 

 

 

 

 

 

 

 

What if we search for 30? And what for 90? 
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Search cost 

Every node is replaced by one of its children 

In the worst case we reach a leaf node 

Cost ≤ tree height – 1 + 1 
– 1 because the root node is in RAM 

+ 1 for accessing the data file 

Not needed if the index contains the data 

It follows that we need to know how to compute  
the height of a B-tree with order d 
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Maximum number of nodes in a B-tree with height h 

The maximum number of nodes is reached when all nodes are 
full, that is they contain 2d entries 

Every internal node thus has 2d+1 child nodes 

 

 

 

The maximum number of entries is therefore: 
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Minimum number of nodes in a B-tree with height h 

The minimum number of nodes is reached when all nodes 
(except the root) are half full, that is they contain d entries, 
while the root only contains a single entry 

Every internal node thus has d+1 child nodes 

 

 

 

The minimum number of entries is therefore : 
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Height of a B-tree 

Now, we know N, thus we can compute the tree height as: 

 

 

 

 

Moving to logarithms, we obtain: 
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Height of a B-tree: example 

Let us consider the following values: 
Key length: 8 bytes 

RID length: 4 bytes 

PID length: 2 bytes 

Page size: 4096 bytes 

We obtain: 
(8+4)2d + 2(2d+1) = 4096 

d = (4096-2)/(24+4)  = 146 

If N = 109, searching for a key value requires at most 
log147(109/2)  + 1 = 5 I/O operations! 

A binary search would require 22 accesses,  
supposing all pages are completely full 
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Height of a B-tree : considerations 

Variability of h is, with N and d fixed, very limited  
(maximum – minimum = 1) 

With the following values of d, with h = 3 we can store up to 
(2*146+1)3 – 1 = about 25 millions keys 

33 

1.E+00

1.E+03

1.E+06

1.E+09

1.E+12

1.E+15

1.E+18

1.E+21

1.E+24

0 1 2 3 4 5 6 7 8 9 10

Nmin

Nmax
P d 

N 

1000 1000000 1000000000 

hmin hmax hmin hmax hmin hmax 

512 18 3 3 5 5 7 8 

1024 36 2 2 4 4 6 6 

2048 73 2 2 4 4 5 5 

4096 146 2 2 3 3 5 5 

8192 292 2 2 3 3 4 4 

16384 585 1 2 3 3 4 4 



B-tree: range search 

The algorithm starts by visiting the tree root 

The tree is traversed in-order 

Supposing d=0: 
Visit the left sub-tree 

Visit the key 

Visit the right sub-tree 

It is inefficient, since RIDs are stored also in internal nodes 
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B+-tree 

The main features of a B+-tree are: 
The entries (ki,ri) are all contained in leaf nodes 

The tree is higher (with respect to a B-tree) 

Leaves are linked as a list (possibly, double-linked)  
using pointers (PIDs) to simplify range search 

Internal nodes contain only key values (not necessarily 
corresponding to values existing in data records) 

The order of internal nodes is higher 

The tree is lower (with respect to a B-tree) 
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B+-tree: format of internal nodes 

Internal nodes have the following format,  
where: k1 < k2 < … < km 
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k1 k2 … ki ki+1 km       

≤ k1 

 > k1 

≤ k2 

… 

 > ki 

≤ ki+1 

> km 



Example of B+-tree 

This is an example of an order 1 B+-tree 
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B+-tree: search 

The algorithm starts by visiting the tree root 
Usually, this is kept in main memory 

We look for the search key k within current node entries 
If we are in an internal node, replace the current node  
with its i-th children node, where: ki-1 < k < ki 

If we are in a leaf node and such an entry exist, found 

If we are in a leaf node and such entry does not exist, not found 

Cost = tree height 
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B+-tree: search example 

We search for the key 40 
40<100 => we follow the left child 

40>30 => we follow the right child 

 

 

 

 

 

 

 

 

 

What if we search for 30? And what for 90? 
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B+-tree: range search 

Let us suppose to search for the range [klow,khigh] 

Search for the first key value k≥klow 

Since leaves are linked as a list, we can avoid traversing  
the tree and sequentially scan leaf nodes until we find a value 
k>khigh 

The RIDs we find in the list are the query result 
If the index is unclustered, we might need to sort RIDs,  
in order to avoid accessing a page multiple times 

And what if the index is sparse? 
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B+-tree: range search example 

We search for keys in the range [35,160] 
35<100 => we follow the left child 

35>30 => we follow the right child 

From here, we scan leaves until we find 164>160 
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B+-tree: insert 

Let us suppose we want to insert a new entry (k,r) 

The insert algorithm first looks for the leaf node  
where the new key value k should be inserted 

If there is enough space (the leaf contains less than 2d entries) 
the new pair (k,r) is inserted in the leaf and the algorithm ends 

What if there is not space enough (overflown leaf)? 
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B+-tree: leaf split 

The overflown leaf F is split in two leaves (FL e FR) 

Each leaf will contain half of F entries 

We compute the median value kc of F entries (usually c=d) 

We move to FL all entries having key value k ≤ kc 

We move to FR all entries having key value k > kc 

In the parent node of F the pointer to F is replaced  
by the two pointers to FL and FR and by the value kc 
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B+-tree: split propagation 

What if the parent node of F is full? 

It is an overflown node: we act as before, so we split it 

It follows that splitting propagates recursively towards the root 

In the worst case, the root node is also full,  
we split it in two and create a new root node 

The tree height increases 

This is why the root cannot have minimum occupation higher 
than 2 
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B+-tree: split example 

Order 2 B+-tree 

 

 

 

We insert the key value 9 
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B+-tree: insert cost 

Without split: h reads + 1 write 

With split: 
In the worst case, we recursively split up to the root:  
h reads + 2h+1 writes 

For computing the average value, we should note that, for a 
tree with b nodes, we had b-1 splits 

Since Nmin=1+d(b-1)≤N 

We obtain that the average number of splits is (b-1)/N, that is 
about 1/d 

Average cost: ≤ h reads + 1+2/d writes 
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B+-tree: alternative strategy for overflows 

As we just saw, splitting a node could be very inefficient 

An alternative strategy considers giving some entries of the 
overflown node to a non-overflown sibling node (with the same 
parent node) (re-distribution) 

We reduce the number of splits 

The cost is higher (we read and re-write more nodes) 

On average, we obtain a “fuller” tree 
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B+-tree: delete 

Let us suppose we want to delete an entry (k,r) 

The delete algorithm first looks for the leaf node  
where the key value k should be stored 

We delete the entry from the leaf 

If the leaf contains at least d entries the algorithm ends 

What if the leaf contains d–1 entries (underflown leaf)? 
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B+-tree: underflow management 

We have two alternatives: 
Redistributing entries of the underflown leaf with a sibling leaf 
(with the same parent node) 

Delete the underflown leaf, inserting its entries in a sibling leaf 

The second alternative is possible only if the sibling leaf has  
d or d+1 entry (otherwise?) 

Deletion can be recursively propagated towards the root 
In the worst case, the root underflows 

The tree height decreases 
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B+-tree: redistribution 

If the sibling node contains more than d+1 entries we have to 
redistribute 

Entries are distributed in a balanced way  
among the two sibling nodes 

We should update the separating value in the parent node 
The number of entries in the father node does not change 

This phenomenon does not propagate towards the root 
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B+-tree: concatenation example 

Order 2 B+-tree 

 

 

 

 

 

Delete the key value 10 
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B+-tree: redistribution example 

Order 2 B+-tree 

 

 

 

 

 

Delete the key value 19 
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B+-tree: delete cost 

Without underflow: h reads + 1 write 

With underflow: 
Every concatenation costs 1 read + 2 writes 

In the worst case, we recursively concatenate up to the root 

Concatenation for all levels, except the upper two 

Redistribution in the root child 

Maximum cost: 2h–1 reads + h+1 writes 

Average number of concatenations: 1/d 

Average cost: ≤ h+1+1/d reads + 1+2+2/d writes 
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B+-tree: memory occupation 

Every internal node contains at most  
2d key values and 2d+1 PIDs 

The order of a B+-tree is therefore computed as: 

 

 

 

 

For trees, we need to know whether the index is primary or 
secondary 

In some cases, the leaf level can coincide with the data file 
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B+-tree: number of leaves (primary index) 

In every leaf we find at most 2d entries (k,r) and 1 or 2 pointers 
to sibling nodes 

Therefore, the order of leaf nodes is: 

 

 

 

Thus, the number of leaf nodes is: 

 

 

 

The average fill factor u usually equals log2 
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Height of a B+-tree 

Since we know NL, we can now compute the B+-tree height: 

 

 

 

 

 

Moving to logarithms, we obtain: 
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B+-tree in practice 

Secondary index 

B+-tree as a data file 

Variable-length keys 

Key compression 

Multi-attribute B+-tree 

Bulk-loading 

Implementing B+-tree: GiST 
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B+-tree as a secondary index 

When duplicate values exist, every key value could not be 
paired with just a RID, but to a RID list 

Tipically, the list is kept sorted for PID values (why?) 

What if the RID list is (very) long? 

It can be the case that the size of a single entry exceeds 
the page size 

Possible solutions: 

Overflow pages for the leaf 

Duplicating the keys in the index 

Using PIDs instead of RIDs 

Posting file 
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B+-tree: duplicating keys 

This means that several entries exist with the same key value 
(but different RID) 

We should slightly modify the search algorithm (in practice,  
this becomes a range search) 

Not every leaf is “addressed” 

Inefficient when deleting 
We insert the RID as “part” of the key 

The index is now “primary” 
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B+-tree: using PIDs 

Instead of keeping a list of RIDs, we keep a list of PIDs,  
including only those pages containing at least a record  
with that key value 

PIDsize ≤ RIDsize 

number of PIDs ≤ number of RID 

This is efficient if a page usually contains several records  
with the same key value 

Clustered index 
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B+-tree: posting file 

The RID list is stored in a separate file 

Every entry in the posting file has the format (k,l), where 
k key value 

l RID list having key value k 

B+-tree entries contain pointers to posting file entries 

We introduce an additional indirection level 
The cost of each operation is increased by 1 
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B+-tree as a data file 

Tree leaves contain the data records 
In its original version, the B-tree was introduced as a data file 
organization 

Pros: 
The data file is automatically sorted 

Sorting is kept also when insertion/deletions are present 

Cons: 
Updates move records, thus changing their RIDs… 
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B+-tree: variable-length keys 

What we saw up to now is only valid for fixed-length entries 

This cannot hold in some cases: 
Variable-length keys(e.g., varchar) 

Secondary index 

Index as a data file 

In such cases, the concept of order is no longer valid,  
and we should apply considerations on minimum node 
utilization 
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B+-tree: key compression 

Clearly, in order to minimize access costs,  
we should strive to have high values of d 

We can consider reducing the key length (compress)  
within nodes 

B+-trees are not constrained to have existing key values  
within internal nodes 

Their goal is to distinguish the content of sibling nodes 

Example: 

 

 

 

 “Ser” is enough… 
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B+-tree: multi-attribute searching 

Suppose we have a multi-attribute search predicate 

SELECT * FROM persone 

WHERE cognome=“Rossi” 

AND anno>1990 

How can we exploit an index to efficiently solve such query? 
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B+-tree: using multiple indices 

A first technique exploits a single index: 
We use only the first (or the second) predicate to retrieve  
all result records 

Then, we verify the remaining predicate on such records 

A second technique exploits both indices: 
We separately retrieve RIDs of records satisfying  
either predicate 

We perform the intersection of the results 

This is efficient if RIDs are sorted 
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Multi-attribute B+-tree 

In both cases, the additional work to be done can nullify  
the advantage of using the index 

We can build a multi-attribute index 

The key is composed by the concatenation of relevant 
attributes 

Sorting is performed on lexicographic order 
We consider the following attribute  
only if the previous attribute is equal 
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Multi-attribute B+-tree: example 

Index on (cognome, anno) 

 

 

 

With this we can efficiently solve queries on cognome and 
(cognome, anno) 

What about range searches? 

Not on anno alone (why?) 

With n attributes we can have n! different indices 
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B+-tree: bulk-loading 

Come visto, l’inserimento di elementi in un  
B+-tree provoca uno split ogni d record inseriti 

Spesso la decisione di costruire un indice  
non avviene in fase di creazione del DB  
ma in seguito 

Ad esempio, ci accorgiamo che una query è lenta 

È conveniente creare un indice su una tabella numerosa 
effettuando l’inserimento uno a uno? 

Evidentemente no… 
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B+-tree: loading 

A list of entries (key,RID) is created and sorted for key values 

Such list (appropriately paged) corresponds to the leaf level 

In case, we can use a fill factor lower than 100% 

Starting from the key values in every leaf node 
a list of entries (key,PID) is created 

Such list (appropriately paged) corresponds to the first level 
above the leaves 

… and so on, recursively, until we reach the root  
(all entries can be contained in a single node) 
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Implementing B+-tree: GiST 

GiST (Generalized Search Tree) (Hellerstein, Naughton, Pfeffer, 
’95) is not a specific access method, but a general structure 
that, when appropriately instantiated, can behave  
like a B+-tree, a R-tree, etc. 

The main goal is not defining a new index type, rather 
simplifying the development of different access methods 

For example: B+-tree in the Postgres system requires 
about 3000 lines of C code 

The same B+-tree implemented as a GiST instance, 
requires about 500 lines of code 
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Basic GiST concepts 

Instead of considering specific queries, each query is seen as a 
generic predicate (q) 

Every GiST node contains a list of entries (p,ptr),  
where p is a predicate (key) and ptr is a pointer 

We only access the sub-tree referred by the pointer ptr 
associated to the key p if p is consistent with the q predicate,  
that is, only if p does not exclude the possibility  
that the sub-tree could contain some records satisfying q 

The only GiST constraint is the monotonicity of p, that should 
hold for every record contained in the sub-tree pointed by ptr 
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Predicate monotonicity 

We should check whether, given a query q,  
the sub-tree pointed by ptr should be accessed 

E.g.: q=italian(X)&&student(X) 

E.g.: q=mexican(X)&&freshman(X) 

E.g.: q=french(X)&&worker(X) 
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GiST properties 

Independently of the specific instance, every GiST has the 
following properties: 

A GiST is a perfectly balanced paged tree 

An entry in an internal node is a pair (p,ptr), where: 

p predicate used as a search key 

ptr pointer to another GiST node 

An entry in a leaf node is a pair (p,ptr), where: 

p key value 

ptr pointer to a tuple (DB record) satisfying p 

Every node (except the root) contains at most M entries  
and at least f M entries, with 2/M ≤ f ≤ 1/2 (f = minimum 
fill factor) 

With variable-length entries, we use values dependent on entries size 

The root, if it is not a leaf, contains at least two entries 

For each entry (p,ptr) in an internal node,  
p holds for all tuples reachable from ptr  

 

74 



The real GiST 

The base of GiST is the definition of a number of methods, used 
to manage: 

key values (Key methods) 

tree nodes (Tree methods) 

The GiST definition only specifies Tree methods 

Implementation of Key methods is given when GiST is 
instantiated to manage a specific type of keys 

E.g.: real values (B+-tree) 

E.g.: multi-dimensional ranges (R-tree) 

Since Key methods are called by Tree methods,  
we need to provide a standard interface for the former ones 
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Key methods: search 

Consistent(E,q) 
Input:  Entry E=(p,ptr) and search predicate q 

Output:  if p & q == false then false else true 

 

The goal of Consistent is “pruning” the search space  
(that is, eliminating sub-trees) 

If the predicate of a sub-tree is not consistent with the query,  
then we avoid visiting the whole sub-tree 
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Consistent: comments 

If the test p & q is computationally demanding,  
we can still use a conservative approximation,  
that is, Consistent returns “true” even if p & q = false 

This only affects efficiency, not correctness of results 
(we access a sub-tree, although the records contained 
therein do not belong to the query result) 

Consistent (just like the other methods) is specified  
so as to work with arbitrarily complex predicates 

In practice, predicates can be “restricted” in order to 
improve algorithms performance 
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Consistent in B+-tree 

Every predicate is a range [x,y[ 

If the query is a single value v  
Consistent returns true if and only if x ≤ v < y 

If the query is a range [v,w[ 
Consistent returns false if and only if x ≥ w or y ≤ v 
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Key methods: predicate creation 

Union(P) 
Input:  Set of entries P = {(p1,ptr1),…,(pn,ptrn)} 

Output:  A predicate r holding for all tuples reachable  
 by way of one of the entry pointers 

The goal of Union is providing the information needed  
to characterize the predicate of a parent node,  
starting from predicates of children nodes 

In general, r can be logically derived as a predicate such as 
(p1 | … | pn)  r  
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Union in B+-tree 

Given P = {([v1,w1[,ptr1),…,([vn,wn[,ptrn)} 

Returns [min{v1,…,vn}, max{w1,…,wn}[ 

80 



Key methods: key compression 

Compress(E) 
Input:  Entry E = (p,ptr) 

Output:  Entry E’= (p’,ptr), with p’ compressed 
representation of p 

The goal of Compress is providing a more efficient 
representation of the p predicate 

E.g.: separators in place of totally ordered ranges 

E.g.: prefixes from strings (prefix-B+-tree) 
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Key methods: key decompression 

Decompress(E) 
Input:  Entry E’= (p’,ptr), with p’ = Compress(p) 

Output:  Entry E = (r,ptr), with p  r  

Compression is, in general, lossy 
E.g.: prefix-B+-tree 

Condition p  r requires that, if information loss occurs,  
what we obtain with Decompress is a predicate that holds  
if p holds 

The simplest case is when Decompress is the identity function 
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Key methods: insert 

Penalty(E1,E2) 
Input:  Entries E1 = (p1,ptr1) and E2 = (p2,ptr2) 

Output:  A “penalty” value resulting from inserting E2  
 in the sub-tree rooted in E1 

Penalty is used by Tree methods Insert and Split, and is needed 
to compare different alternatives for updating the tree 
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Penalty in B+-tree 

E1 = ([x1,y1[,ptr1) e E2 = ([x2,y2[,ptr2) 

If E1 is the first entry in its node 
Penalty returns max{y2 – y1, 0} 

If E1 is the last entry in its node 
Penalty returns max{x1 – x2, 0} 

Otherwise 
Penalty returns max{y2 – y1, 0} + max{x1 – x2, 0} 
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Key methods: split 

PickSplit(P) 
Input:  Set of M+1 entries 

Output:  Two sets of entries, P1 e P2, with cardinality ≥ f M  

PickSplit implements the real split strategy,  
which is not detailed at this level 

Usually, we try to minimize some metric similar to Penalty 
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Picksplit in B+-tree 

P1 contains the first (M+1)/2 entries 

P2 contains the remaining entries 

With variable-length entries we use some criterion  
on entry size, not on number of entries 

This could lead to violate the minimum utilization constraint 
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Tree methods 

Tree methods call other tree methods  
and use defined Key methods 

We implicitly assume that keys are compressed on write  
and de-compressed on read 
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Tree methods: architecture 

Search: calls Consistent 

Insert: calls ChooseSubtree, Split and AdjustKeys 

ChooseSubtree: calls Penalty 

Split: calls a PickSplit and Union 

AdjustKeys: calls Union 

Delete: calls Search and CondenseTree 

CondenseTree: calls AdjustKeys and Insert 
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Search 

The search algorithm recursively descend the tree,  
using Consistent to prune useless branches 

Search(R,q) 

Input:  (sub-)tree rooted at R and query q 

Output:  all records satisfying q 

if R is not a leaf 

for each E in R  

if Consistent(E,q) Search(*(E.ptr),q) 

else for each E in R  

if Consistent(E,q) 

add *(E.ptr) to result 
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Search in linear domains 

For (totally ordered) linear domains, as in the B+-tree case, 
GiST specifies a more efficient extension that exploits  
the contiguity of leaves to solve range queries 

In particular, Search reaches the first leaf which is “consistent” 
with query q 

After that, pointers in the linked list of leaves are used  
until a leaf is reached which is “inconsistent” with query q 
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Insert 

The insertion algorithm is used to both insert new entries  
and re-insert “orphaned” entries, resulting from underflows 

For this, the input also includes the tree level  
where the entry should be inserted, with the understanding 
that leaves are at level 0 

In case of overflow, we call the Split function  
and propagate updates towards the root 
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Insert 

Insert(R,E,l) 

Input:  Tree rooted at R, entry E, level l 

Output:  Tree with E inserted at level l 

N = ChooseSubtree(R,E,l) 

if E can be inserted in N  
insert E in N 

else Split(R,N,E) 

AdjustKeys(R,N) 
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ChooseSubtree 

ChooseSubtree uses Penalty to recursively determine  
the sub-tree where E should be inserted 

ChooseSubtree(R,E,l) 

Input:  Tree rooted at R, entry E, level l 

Output:  node N at level l where E should be inserted 

if R is at level l return R 

else choose among all entries F = (p’,ptr’) in R the one 
minimizing Penalty(F,E) 

return ChooseSubtree(*(F.ptr’),E,l) 
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Split 

Split uses PickSplit to divide entries of an overflown node 

The parent of the overflown node is still on the call stack 

Split(R,N,E) 

Input:  Tree rooted in R, node N, entry E 

Output:  Tree with N split and E inserted 

P1,P2 = PickSplit({entries of N} U {E}) 

insert P1 in N e P2 in a new node N’ 

p’ = Union(P2), ptr’ = &N’, E’ = (p’,ptr’) 

if E’ can be inserted in Parent(N)  

then insert E’ in Parent(N) 

else Split(R,Parent(N),E’) 

F = entry in Parent(N) with F.ptr = &N 

F.p = Union(P1) 94 



AdjustKeys 

AdjustKeys recomputes key values (predicates)  
following an update 

The algorithm recursively climbs the tree and it terminates 
when it reaches the root or an already accurate key value 

AdjustKeys(R,N) 

Input:  Tree rooted at R, node N 

Output:  Tree with N ancestors having correct and accurate 
key values 

if  N = R or for entry E = (p,ptr), with ptr = &N,  
 E.p = Union({entry of N}) already holds 

return 

else  E.p = Union({entry of N}) 

AdjustKeys(R,Parent(N)) 
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Delete 

Delete keeps the tree balanced, decreasing its height  
if the root, when CondenseTree terminates, has a single child 

Delete(R,E) 

Input:  Tree rooted at R, entry E = (p,ptr) 

Output:  Tree with E removed 

Search(R,E.p) 

if E not found return 

L = node containing E, remove E from L 

CondenseTree(R,L) 

if R has a single entry 

remove R 

make the child of R the new GiST root node 
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CondenseTree 

CondenseTree manages the re-insertion at the original level of 
orphaned entries from underflown nodes, kept in a set 

CondenseTree(R,L) 

Input:  Tree rooted at R and leaf  L 

Output:  New tree 

N = L, Q = {} 

if N = R goto end 

else P = Parent(N), E = entry in P: E.ptr = &N 

if #{entry of N} < k M 

Q = Q U {entry of N}, remove E from P, AdjustKeys(R,P) 

if E was not removed from P AdjustKeys(R,N) 

else N = P, restart 

for each E in Q Insert(R,E,level(E)) 97 



Performance evaluation 

Up to now, we computed the search performance of a B+-tree 
as a primary index 

In the case of a secondary index we should know 

How many leaves contain result entries 

How many data pages contain result records 

We will suppose that: 

RID lists in the leaves are sorted 

We will not access a data page more than once (for each key value) 

Attribute values are uniformly distributed in the data file 

Every value is repeated (on average) N/K times 

Records are uniformly distributed in pages of the data file 
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Estimating the number of result pages 

If we should retrieve R records in P pages 

1/P = probability that a record is inside a given page 

1–1/P = prob. that a page does not contain a record 

(1–1/P)R = prob. that a page does not contain any 
record 

1–(1–1/P)R = prob. that a page contains at least one 
record 

Multiplying this by the number of pages, we obtain the average 
number of pages to be accessed 

 

(R,P) = P (1–(1–1/P)R) ≤ min{R,P} 
 

Given a drawer with an infinite number of socks in P colors,  
how many different colors we have, in average, when R socks 
are taken? 
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Cardenas model 

The model we just saw (Cardenas) assumes pages with infinite 
size (note that N does not appear in the formula)  

This leads to an appreciable underestimation of the 
correct value for pages with less than about 10 record 

If R = N, the formula returns a value lower than P 

 (N,P) = P (1–(1–1/P)N)  P (1–e–N/P) 
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Yao model 

The model by Yao takes into account the actual capacity 
C = N/P of pages 

The model considers all possible ways for allocating  
the R result records in the P pages 

       = number of combinations 

            = number of combinations excluding a page 

                    = combinations including a given page 

                  = probability that the page contains at least  
   one record 
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Formula by Yao 

Multiplying by the number of pages, we obtain  
the average number of accessed pages 

 

 

 

E.g.: N=1000, P=250 
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Comparing the models 

When pages contain a variable number of records,  
it can be proven that the formula by Yao overestimates costs 

If record allocation is not uniform, both models overestimate 
costs 

If R is large, computing the formula by Yao could be 
computationally expensive 
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Cost of index access 

Total cost = index cost + data pages cost 

Index cost = cost for the first leaf + cost for reading all leaves 
Cost for the first leaf = h-1 

Number of leaves = L*EK/K   

Data pages cost: EK times the formula by Cardenas (or Yao) 
= EK x F(N/K,P) 

This should be compared with sequential cost 
= P 
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Example 

File with N = 106 records in P = 40000 pages 

Unclustered index on an attribute with K = 105 values 
with L = 7045 leaves and height h = 4 

We see that the tree 
height contribution  
is entirely irrelevant  
for costs 
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Cost for range search A [x,y] 

Total cost = index cost + data pages cost 

Index cost = cost for the first leaf + cost for “sequentially” 
reading all leaves 

Cost for the first leaf = h-1 

Number of leaves = fs*L   

fs = selectivity factor of predicate = (y-x)/(maxA-minA) 

Data pages cost: fs*K  times the formula by Cardenas (or Yao) 
= fs*K  F(N/K,P) (sorting attribute) 

= fs*P  (non-sorting attribute) 
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Hash indices 

Differently from table-based techniques, where the association 
<key, RID> is explicitly stored, a hash-based organization  
uses a hash function, H, trasforming every key value  
into an address 
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Hash indices: collisions 

Except for particular cases, hash functions are non-injective: 
           k1 ≠ k2  H(k1) ≠ H(k2) 

 thus collisions might occur 

If k1 and k2 ≠ k1 collide, H(k1) = H(k2) 

A hash function that does not generate collisions is called 
perfect 

Every address generated by the hash function identifies  
a logical page, or bucket 

The number of “elements” (key values for indices,  
records for data organizations) that are contained in a bucket 
defines the capacity, C, of buckets 
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Hash indices: overflow 

The memory composed by buckets addressable by the hash 
function is called primary area 

If a key is assigned to a bucket already containing C keys,  
the bucket overflows 

Managing overflows could require, depending on the specific 
technique, using a separate memory area, called overflow area  
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Static and dynamic hash indices 

A hash function should be surjective, thus able to generate 
P different addresses, as many as the primary area buckets 

If, for a specific hash technique, the value of P is constant,  
the hash technique is called static 

In this case, the primary area size is part of the design  
of the hash index 

On the other hand, if the primary area can expand and 
contract, in order to adapt to the actual data volume, the hash 
technique is called dynamic 

In this case, multiple hash functions are needed 

The first dynamic hash techniques were proposed around  
the end of’70s, while static techniques were first developed  
in the ’50s 
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Common features of hash indices 

For both static and dynamic techniques, some common aspects 
are worth mentioning: 

Choice of the actual hash function H 

Overflow management policy 

Capacity C of primary area buckets 

Capacity Cov (not necessarily equals to C) of buckets  
in the overflow area (if applicable) 

Utilization of allocated memory 

Hash techniques are usually primary (but also secondary) 

Usually, hash functions do not preserve order,  
that is they are non-monotone 

Using hash indices is not recommended in cases  
where range queries are possible (or frequent) 
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Static hashing 

The figure shows a simple example of a static hash 
organization, where: 

Keys correspond to natural numbers 

Primary area is made up of P = 5 buckets with size C = 5 

The hash function is: H(ki) = ki % 5 

Overflows are managed by allocating, for each primary 
bucket, one or more overflow bucket, with size Cov = 5, 
linked in a list 
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Static hashing: cost analysis 

For a hash file with N records in buckets of size C = Cov,  
whose primary area contains P buckets, under the hypothesis 
of a perfect distribution of records on the P addresses, it is: 

every address is generated N/P times 

every list contains N/(P*C) buckets 

The search cost for a record is thus proportional to N/(P*C) 

E.g.: N = 106, C = 10, P = 25000 

A (successful) search accesses (on average) 2 buckets 

This equals the number of I/O operations, supposing 
that each bucket requires a single I/O read 
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Hash functions 

A hash function is a (surjective) transformation  
from the key space, K, to the address space, {0,...,P - 1} 

The hypothesis than an arbitrary subset of K would be 
transformed to the P different addresses in a perfectly 
homogeneous way is pure abstraction, not very useful for 
analyzing performance obtainable from different hash 
organizations 

The ideal case that should be used to compare a specific hash 
function H is the one with uniform distribution on the address 
space, where, for every subset of K, each of the P addresses  
has the same probability, 1/P, of being generated 
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Hash functions: uniform distribution 

In the ideal case, the number of keys, Xj, assigned to the 
j-th bucket follows a binomial distribution 

 

 

 

 with average value m and variance s2 given as: 

 

 

 

 where neither m nor s2 depend on the specific bucket 

For P >> 1, the ratio /  is almost equal to 1 
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Quality of a hash function 

For “real” hash functions, performance varies  
depending on the specific set of key values 

E.g.: The function H(ki) = ki % P is a “good” function,  
but for the set of key values {0, P, 2P, 3P,…,N·P}  
would allocate all keys in the bucket with address 0 

Every hash function, when it is chosen independently  
from the specific set of key values, could lead to very bad 
performance, in the worst case 

In the “average” case, however, when arbitrary subsets of K 
and real data files are considered, we observe that different 
hash functions actually behave differently 
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Degeneracy 

An appropriate criterion for evaluating an hash function H,  
with respect to a particular set ok key values, is the analysis of 
its degeneracy / , where: 

 

 

 

 are computed over all the P buckets and xj is the number  
of records within the j-th bucket 

The lower the degeneracy,  
the better the behavior of the hash function 
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Hash functions: mid square 

The key is multiplied by itself 

A number of central digits equal to those of P - 1 is extracted 

The so-obtained value is normalized by P 
 

1451422=21066200164 
 

For example, if P = 8000, by normalizing we obtain the address: 
6620 x 0.8  = 5296 
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Hash functions: shifting 

The key is divided into parts, each made up of a number  
of digits equal to those of P – 1 

Parts are then summed an the result normalized 

E.g.: P = 800, k =14514387 

387+514+14=915 

By normalizing we obtain 915 x 0.8  = 732 
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Hash functions: folding 

The key is divided as for shifting 

Parts are “folded” and summed, then the result is normalized 

E.g.: P = 800, k =14514387 

783+514+41=1338 

By normalizing we obtain : 

 1338%800 = 538  
538 x 0.8  = 430 
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Hash functions: division 

The numeric key is divided by a number Q  
and the address is obtained as the rest: 

H(k) = k % Q 

For the value of Q we have the following (empirical) advices: 

Q is the highest prime number not higher than P 

Q is not prime, not higher than P, with no prime factor 
lower than 20 

If Q < P, we should have P = Q in order to ensure  
the surjectivity of the hash function 
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Hash functions : division (example) 

P = 6997  

k = 172146  H(k) = 4218 

 172147  4219 

 172148  4220 

 172149  4221 

 …  … 

 174924  6996 

 174925  0 
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Alphanumeric keys 

The management of alphanumeric strings requires  
a preliminary conversion step 

Probably the most common technique is to define:  

An alphabet A, where strings’ characters are drawn 

A bijective function ord( ), associating to each alphabet 
element an integer value in the range [1,|A|] 

A conversion radix b 

A string S = sn-1, ...,si, ...,s0 is then converted into a numeric key 
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Alphanumeric keys: example 

Given A = {a,b,…,z}, ord() with values in [1,26], and b = 32,  
the string “indice” produces the value 

k(“indice”)  
= 9x325+14x324+4x323+9x322+3x321+5x320  

= 316810341 

Simpler techniques, not using a radix, like, for example 

 

 

 are usually worse, since they can generate the same numeric 
key with different strings, obtained as anagrams 
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Choosing the “right” radix 

With the “division” technique we can have bad performance if 
the radix b has prime factors in common with P 

E.g.: given A = {a,b,…,z}, b = 32, and P = 512 

The value H(k(S)) is determined by the last two characters only: 
“folder”: ordinal values are 6, 15, 12, 4, 5, 18, 
k(“folder”)=217,452,722, H(217452722)=178 

“primer”: ordinal values are 16, 18, 9, 13, 5, 18, 
k(“primer”)=556,053,682, H(556053682)=178 
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Choosing the “right” radix (cont.) 

In order to understand the root causes of this problem,  
we need to comprehend the properties of the % operator 

The simplest case to consider is the one where P  
is a multiple of b, that is P =  x b 

A value y exists so that by%(  x b) = 0 

For the % operator the following property holds  
(useful for computing k(S)): 

 

 

 characters sn-1 through sy give a contribute = 0 to the value of 
H(k(S)) (in the example, y = 2), thus the “useful” string is only y 
characters long 

With radix = 26 we have problems whenever P has factors  
13 and 2 
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Analysis of an example 

The following experiment was performed by Mullin in 1991  
by using, as the key dataset, all 6-char English words, on the 
alphabet A = {a,b,…,z}, in the Unix spelling checker 

The graph shows the case b = 26 with P varying  
between 420 and 520 

Distribution peaks  
are obtained for P values 
multiple of 13 

In particular,  
the maximum 
is obtained for P = 507  
= 13 x 13 x 3 
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Load factor 

Given an estimate of the number N of records,  
and given the bucket capacity C, choosing a load factor d 
determines the number P of buckets in the primary area 

We should consider that, when d decreases, the percentage of 
overflow records decreases as well 

It is therefore not recommended using high values  
of the load factor 

Common values, representing a good trade-off  
between memory utilization and operational costs,  
are included in the range [0.7,0.8] 
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Bucket capacity 

Clearly, a capacity such that reading/writing a single bucket 
requires more than one I/O operation is not efficient 

On the other hand, it is convenient to have bucket capacity  
C > 1, due to the relationship existing between the value of C 
and the fraction of overflow records 

When increasing C, when the load factor d is constant,  
the fraction of overflow records decreases,  
under the hypothesis of an ideal hash function  
and a separate overflow area exists 

Empirically, the result is valid also in the case  
of non-ideal hash functions 
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Optimal bucket capacity 

Since increasing the number of overflow record results in poor 
performance, it is recommended to have maximum bucket 
capacity C, under the constraints: 

Reading/writing a bucket should result in a single I/O 
operation (sequential blocks) 

Transferring a bucket with capacity C should cost less 
than transferring two buckets with capacity lower than C 
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Computing the average number of overflows 

The number of times that the j address is generated  
is a random variable with a binomial distribution,  
the average number of overflow in the j-th bucket is: 

 

 

 

 that does not depend on the specific bucket j 
For the sake of brevity, we will write Pr(x) in place of Pr{Xj = xj} 
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Overflow distribution 

The total number of overflows is obtained as: 

 

 

 

For high values of N and P, we can approximate  
the binomial distribution with the Poisson distribution : 

 

 

 

 

Since P = N/(C x d): 
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Total number of overflows 

The total number of overflows is therefore obtained as : 

 

 

 

By substituting the variable i = x – C: 

 

 

 

Again, since P = N/(C x d): 
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Example 

C\d 0.5 0.7 0.9 0.95 1 

1 0.213061 0.280836 0.340633 0.354464 0.367879 

2 0.103638 0.170307 0.237853 0.254377 0.270669 

5 0.02478 0.071143 0.137768 0.156336 0.17531 

10 0.004437 0.028736 0.085344 0.103778 0.123244 

20 0.000278 0.008014 0.047641 0.063497 0.080492 

50 2.51E-07 0.000496 0.016561 0.026191 0.03622 
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Managing overflows 

Techniques used to manage overflows aim to reduce  
the number of bucket accesses required to retrieve  
the searched record 

Two main strategies: 
Chaining 

Pointers are used 

Overflow area might be used 

Open addressing 

Do not use pointers 

Buckets in primary area are used to store overflow records 
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Chaining in primary area 

Separate lists 
If bucket j overflows, we insert the new record in the first non-
full bucket following j 

Overflow record are linked in a list 

Non-overflow record should be linked, too 

Coalesced chaining 
A single pointer is used for every bucket (not for every record) 

Bucket lists could be merged (coalesced) 

E.g.: j overflows in j+h and j+h is full, 
both overflow in j+h+l 
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Examples 

Separate lists 

 

 

 

 

 

 

Coalesced chaining 

The coalesced chaining 
technique simplifies  
pointers management,  
but performance is worse 

137 

k H(k) 

k1 j 

k2 j 

k3 j 

k4 j+h 

k5 j 

k6 j+h 

k5 j+h+l k6 

k3 j+h k4 

k1 j k2 

k5 j+h+l k6 

k3 j+h k4 

k1 j k2 



Chaining in overflow area  

As said, the capacity of overflow area buckets Cov  
could differ from the one of primary area buckets C 

Usually, Cov < C to avoid wasting storage  
in case of reduced overflows 

For the same reason, we could use coalesced lists 

Clearly, in case a overflow bucket overflows,  
we would obtain an overflow bucket list 
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Open addressing 

In open addressing techniques, every key value ki is associated  
to a sequence of addresses 
H0(ki), H1(ki), …, Hl(ki), with H0(ki) = H(ki) 

When ki is inserted, we test all addresses H0(ki), H1(ki), …, Hl(ki) 
until the address of a non-full bucket is found 
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Open addressing: searching 

To search for ki we should look into all buckets with address 
H0(ki), H1(ki), …, Hl(ki) until 

Either we find ki (successful search) 

Or we find a non-full bucket (unsuccessful search) 

With open addressing techniques, we should be very careful  
how we delete records 

If a record of a full record is deleted, the bucket becomes  
non-full, thus it “stops” the search 
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Open addressing: deleting records 

The location of a deleted record is thus marked as  
“non occupied”, and it can be “occupied” (re-used)  
when new records are inserted 

A bucket is full if and only if all its locations are “occupied” 
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Linear probing 

At each step the address is increased by a constant value s 
Hj(ki) = (Hj–1(ki) + s) % P 

Thus: Hj(ki) = (H(ki) + s x j) % P 

To make sure that all addresses can be generated, we need to 
ensure that s and P have no common factors 

Otherwise, only P/MCD(P,s) can be generated 

E.g.: P=10, s=4, MCD(10,4)=2  
Addresses for ki = 3 are 3, 7, 1, 5, 9, 3, … 
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Primary clustering 

If bucket j overflows, it is likely that bucket j+s overflows,  
thus that bucket j+2s overflows… 

There is a clustering of records in some of the pages 
E.g.: P=31, s=3, the following addresses are generated: 

1234 → 25, 28, 0, 3, 6, 9, 12, … 

245 → 28, 0, 3, 6, 9, 12, 15, … 

The problem is due to the linearity of the probing step s 
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Quadratic probing 

At each step the address is increased by a linear value  
a + b(2j –1) 

Hj(ki) = (Hj–1(ki) + a + b(2j –1)) % P 

Thus: Hj(ki) = (H(ki) + a x j + b x j2) % P 

E.g.: P=31, a=3, b=5, the following addresses are generated: 

1234 → 25, 2, 20, 17, 24, 6, … 

245 → 28, 5, 23, 20, 27, 13, … 

Thus lists are not coalescing (e.g., see 20) 

The problem of secondary clustering remains,  
due to keys conflicting for the first address 
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Double hashing 

We try to avoid the secondary clustering problem by using 
two hash functions, H’ and H” 

Address sequences are given by : 
H0(ki) = H’(ki) 

Hj(ki) = (Hj –1(ki) + H”(ki)) % P (if j>0) 

Two keys generate the same sequence if and only if they collide 
on both H’ and H” 
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Double hashing: comments 

The double hashing techniques has the collateral effect  
of producing a high variability of generated addresses,  
depending on the value of H”(ki) 

Considering the actual allocation of buckets  
in secondary storage this could this can significantly  
weigh down I/O operations 

Subsequent buckets are “far away” from each other, increasing latency 

Double hashing approximates well enough the ideal case of 
“uniform hash” (random probing), where at the j-th step each 
address has the same probability of being generated 
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Comparing different techniques 

Techniques not using overflow area have a storage utilization u 
equal to d 

With overflow buckets, we obtain: 
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Search performance 

Coalesced chaining 
Successful search: 

Unsuccessful search: 

 

Separate chaining with overflow area 
Successful search: E ≈ 1 + d/2 

Unsuccessful search: A ≈ e-d + d 
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Performance: open addressing 

Random probing: unsuccessful search 
With buckets with capacity 1, search cost equals  
the number of buckets needed to insert a new record 

Probability of failure at each bucket equals d 

Probability of having found r–1 occupied buckets Pr{costo=r} 
thus equals (1-d) d r–1  

Distribution is geometric with average value d/(1-d) 

Average cost for unsuccessful search is thus: 
A = d/(1-d)+1 = 1/(1-d) 
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Performance: open addressing 

Random probing: successful search 
Average number of accesses equals the average cost  
for inserting all records 

 

 

 

 

 

The sum can be rewritten as the difference of two armonic sums 
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Performance: open addressing 

Random probing: successful search 

We have: 

 

 

Therefore: 
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Performance: open addressing 

Linear probing 
Successful search: 

Unsuccessful search: 

 

 

If the bucket capacity C increases, performance of open addressing 
techniques improve, since: 

A(C)=1+(A(C=1) –1)/C 

E(C)=1+(E(C=1) –1)/C 
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Comparison 

Successful search Unsuccessful search 
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Problems for static organizations 

Storage should be allocated during the initial design 
If storage is overestimated, it is poorly used 

If storage is underestimated, a high load factor follows,  
thus costs increase 

Moreover, if buckets overflow in primary area,  
we have the constraint d ≤ 1 
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Dynamic Hashing  

These techniques adapt the allocation of primary area 
according to the actual number of records 

They are divided in 
With directory 

Virtual hashing 

Dynamic hashing 

Extendible hashing 

Without directory 

Linear hashing 

Spiral hashing 
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Virtual hashing 

The basic idea of Virtual hashing (Litwin ’78) is doubling  
the primary area whenever a bucket overflows 

Records are distributed between the overflown bucket  
and its “buddy”, by using a new hash function 

In practice, we “split” the overflown bucket 
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Virtual hashing: using buddies 

If, afterwards, another bucket in the original primary area 
overflows, and its buddy is still unused, its record records are 
distributed between the bucket and its buddy 
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Virtual hashing: directory 

Since, in a given moment, only some of the buddies are actually 
used, an auxiliary structure is needed to determine which hash 
function should be used 

In practice, a bit vector V is used, where V[i]=1 if and only if  
the corresponding bucket is used 
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Virtual hashing: initializing primary area 

P0 buckets with capacity C are allocated 

An hash function H0 with values in [0, P0 –1] is used 

We set l=0 (number of doublings) 

A binary vector V is created, with length P0,  
and all its elements are set to 1 

After l doublings, the primary area contains P = 2l P0 buckets,  
and the buddy of the j-th bucket (0 ≤ j ≤ 2l –1P0 –1)  
is the bucket with address j + 2l –1P0 
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Virtual hashing: splitting bucket j 

If l=0, or l>0 but the buddy of j is already used or does not exist 
(l>0, but V[j+2l –1P0]=1 or j≥2l –1P0 –1) 

l++, the primary area and the vector V are doubled 

New elements of V equal 0, except for V[j+2l –1P0]=1 

The new hash function Hl is used, with values in [0, 2lP0 –1] 

Keys of bucket j are re-distributed using Hl 

If the buddy of j exists and is not used (V[j+2l –1P0]=0) 
V[j+2l –1P0]=1 

Keys of bucket j are re-distributed using Hl 
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Virtual hashing: example (i) 

P0=7, C=3 

 

 

 

We use the family of hash functions 
Hl(k) = k % (2lP0 ) 

We insert the key k=3820 
H0(3820) = 5 

Bucket 5 overflows 
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Virtual hashing: example (ii) 

P1=14 

 

 

 

 

 

 

The primary area and vector V are doubled 

Keys of bucket 5 are re-distributed with its buddy 12,  
by using the hash function H1(k) = k % 14 
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Virtual hashing: example (iii) 

P1=14 

 

 

 

 

 

 

If we have to insert 3343, we have H1(3343)=11 

Since V[11]=0, we should apply H0(3343)=4 

Bucket 4 overflows and is splitted 
In this case without doubling the primary area 

V[11]=1 and keys are re-distributed 

And if we should insert 5485? 163 
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Virtual hashing: search (and insert) 

In order to search for a key value we need t know  
which hash function was used when it was inserted 

Vector V is what we need 

The following method returns the address of the bucket  
where the searched key could be (or where the new key  
should be inserted) 

Address(k, l) 

Input:  key k, level l 

Output:  Address of bucket at level l where k can be found 

if (l<0) the key does not exist 

else if V[Hl(k)] = 1 return Hl(k) 

else return Address(k, l-1) 
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Virtual hashing: hash functions 

Virtual hashing requires a series of hash functions H0, H1, …, Hl, 
… satisfying the following properties: 

Range condition: function Hl should have values  
in [0, 2lP0 –1] 

Split condition: for each l>0, for each k, and for each value of 
Hl(k), the following should hold: 

Hl(k) = Hl –1(k)  otherwise Hl(k) = Hl –1(k)+ 2l –1P0 

 that is, when a bucket is split its keys can only generate  
either the bucket address, or the one of its buddy 

The family of functions Hl(k) = k % (2lP0 )  
satisfies both conditions 
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Dynamic hashing 

Dynamic hashing (Larson ’78) avoids doubling the whole 
primary area (which limits the storage utilization and slows 
down the organization during doubling), by using an auxiliary 
structure (directory) organized as a binary trie 

The basic idea (used also by extendible hashing) is to use  
a hash function that, given the key k, returns not an address, 
rather a binary pseudo-key H(k) = b0,b1,b2, … 

The ideal case is the one where the set of pseudo-keys is such 
that Pr{bi=1}=1/2, that is, a balanced partition is obtained  
for each considered index 

A simple technique to generate pseudo-keys is to use k  
as the seed of a pseudo-random binary generator 
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Dynamic hashing: using the trie 

The trie is used to drive the search,  
and its leaves contain addresses of primary area buckets 

To search for (or to insert) a key we descend the trie 
corresponding to the generated pseudo-key,  
until a leaf is reached 

Example: bucket 1 contains all key values whose pseudo-key  
is 0… and bucket 2 all those with pseudo-key 1… 
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Dynamic hashing: overflow 

Expansion of primary area is performed by adding a single 
bucket at the time, re-distributing records between the 
overflown bucket and its buddy, and adding a node to the trie 

Example: we have to split bucket 2 

 

 

 

 

 

 

Bucket 2 now contains  
all keys whose pseudo-key 
is 10…, and bucket 3 those with 11… 
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Dynamic hashing: performance 

If the trie is in main memory, a single access is sufficient  
to retrieve a record 

If the trie is not in main memory, performance depend on the 
trie balancing, in terms of number of trie nodes to retrieve 

In the worst case, performance is not so good 
Depending on the pseudo-key set, inserting a new record  
could lead to multiple splits 

After deleting a record in a bucket, if the number of records in 
that bucket is lower than the capacity C, buckets are merged,  
and a leaf is deleted from the trie 

Average storage utilization is about 70% 
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Dynamic hashing: variant 

We initially allocate P buckets and use any static hash function 
H0 

When a overflow occurs, we generate P tries,  
whose root nodes are addressed by H0 
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Extendible hashing 

It is quite similar to dynamic hashing, the main difference being 
the directory management (Fagin et al., ’79) 

No more than two I/O accesses are guaranteed 

Directory consists in 2p cells with addresses [0,2p–1] 

 p≥0 is called directory depth 

A hash function associates to each key a binary pseudo-key, 
H(k)=…b2,b1,b0, for which only the p least-significant bits 
are used to directly access one of the 2p directory cells,  
each containing a pointer to a bucket 
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Extendible hashing: bucket depth 

Every bucket has a local depth p’≤p (value stored in the 
bucket), indicating the actual number of bits used to allocate 
keys within the bucket itself 

Example: the bucket containing key 258 (…001) has p’=2,  
thus it contains keys with pseudo-key both like …001 and …101 
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Extendible hashing: splitting a bucket 

Initially, as single bucket exists with  p’ = 0 and p = 0 

If a bucket has to be split with local depth p’,  
2 cases are possible: 

p’ < p 

p’ = p 
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Extendible hashing: splitting a bucket with p’<p 

A new bucket is allocated and keys are distributed 
between the two buckets using the (p’+1)-th bit of pseudo-keys 

For both buckets we set local depth at p’+1 

Since p’ < p, at least a cell exists where the address of the new 
bucket can be arranged 

We update the pointer of the cell(s) 
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Example: splitting a un bucket with p’<p 
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Extendible hashing: splitting a bucket with p’=p 

Since p’ = p, no cell exists to contain the address of the new 
bucket (obtained from splitting the overflown bucket) 

We double the directory, increasing p by 1 

We copy pointers in the new cells (second half of the directory) 

We perform split as when p’ < p 
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Example: splitting a un bucket with p’=p 
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000 001 010 011 100 101 110 111 Directory (p=3) 

3 



Extendible hashing: deletion 

If a record is deleted in a bucket with depth p’,  
and the number of records in the bucket and in its buddy is not 
higher than the capacity C, buckets are merged 

The local depth of the resulting bucket is p’-1 

If the only buckets at depth p’ = p are merged, it is possible to 
contract the directory, halving it 

Since testing that no bucket exists with local depth p requires, 
in the worst case, to read all the buckets, it is appropriate  
using a local depth table which, for every value p’ ≤ p,  
stores the number, P(p’), of buckets having depth p’ 
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Example: directory halving 
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1 2 2 p’ 

00 01 10 11 Directory (p=2) 

1 2 3 p’ 

000 001 010 011 100 101 110 111 Directory (p=3) 

3 

1 2 2 p’ 

000 001 010 011 100 101 110 111 Directory (p=3) 



Extendible hashing: comments 

Every doubling affects the whole directory 
Problems in case of concurrent operations 

A solution exploits a multi-level directory 
The index is no longer binary 
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Linear hashing 

Linear expansion technique 

“We do not split the overflown bucket,  
rather we split another bucket,  

chosen according to a specific criterion” 
No directory is required 

We have to manage overflows (in primary or separate area) 

Primary area grows “linearly” 

In the case of linear hashing, the bucket to be split is the one 
following the last split bucket 
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Linear hashing: management of primary area 

Initially, P0 buckets are allocated and we use the hash function 
H0(k) = k % P0 

We keep a pointer (split pointer, SP) to the next bucket  
to be split 

Initially, SP = 0 

In case of an overflow 
We add a new bucket with address P0 + SP 

We re-distribute records in SP (including those that may be in 
overflow area) by using the new hash function  
H1(k) = k % (2P0) 

We increase SP by 1 

182 



Linear hashing: doubling the primary area 

After P0 overflows, we have a complete expansion of primary 
area, since the number of buckets is now 2 P0 

We prepare for a new expansion, setting SP = 0, H0(k) = H1(k), 
and H1(k) = k % (22 P0) 

During the j-th expansion we use the hash functions  
H0(k) = k %(2j –1 P0) and H1(k) = k % (2j P0) 

The address of the home bucket for a key is H0(k) if H0(k) ≥ SP,  
H1(k) otherwise 
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Linear hashing: example(i) 

P0=7, C=3, Cov=2, SP=2 

 

 

 

 

 

The overflow of buckets 2 e 3 caused the split of buckets  
0 and 1 

Inserting the key 3820 (H0(3820) = 5) bucket 5 overflows 
We split bucket 2 
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Linear hashing: example (ii) 

P0=7, C=3, Cov=2, SP=3 

 

 

 

 

 

Allocation of bucket 9 caused the deletion of an overflow 
bucket 

The next overflow would split bucket 3 

After 7 split the primary area is doubled  
and we restart from SP=0 
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Linear hashing: pros and cons 

+ The lack of a directory and the management of splits  
make implementing the structure very easy 

+ Management of primary area (expansion and contraction)  
is immediate, since buckets are always added (and removed)  
at the end 

– Storage utilization is rather low (variable between 0.5 and 0.7) 

– Management of overflow area introduces problems  
similar to the ones of a static organization 

– Overflow chains of high-address, not yet split, buckets 
can be very long 
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Linear hashing: storage utilization 

A variant, improving storage utilization, does not split a bucket 
if this does not reach a minimum utilization umin 
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Linear hashing: performance 

When storage utilization increases, search costs increase as 
well, since overflow records increase 

Successful search costs 
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Linear hashing: overflow capacity 

Increasing Cov reduces the length of overflow chains 
Search cost reduces as well 

Beyond a given point, we only waste storage 
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Recursive linear hashing 

Principal characteristic of Recursive linear hashing 
(Ramamohanarao & Sacks-Davis, ’84) is the management  
of overflow area, dynamically organized using Linear hashing 

Different levels of dynamic hash files are created 
(on average, no more than 3), with the file at level h  
(h=0 primary area) storing its overflow records into the file  
at level h+1 

At level h we keep the split pointer SPh 
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Recursive linear hashing: operations 

Insertion: 
We compute the address H0(k) 

If the bucket overflows, we move to level 1 using function H1(k) 

If also the bucket at level L overflows, we add a new level 

Split: 
When the j-th bucket at level h is split, records to distribute  
are those of j-th bucket and those in overflow,  
which are contained in buckets at levels (h+1), …, L 
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Recursive linear hashing: search 

Searching for a key could require a number of disk accesses 
equal to the number of levels 

 

h = 0; 

while (h ≤ L) 

 if (Hh
0(k) < SPh) Address = Hh

1(k); 

 else Address = Hh
0(k); 

 if EXISTS(k, Address, h) return true; 

 else if FULL(Address, h) h++; 

  else return false; 
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Recursive linear hashing: addressing 

Overflows at level h are stored using as the new “key”  
the address of the bucket at level h itself 

Allocation is not performed using the key value, k, otherwise, 
when a bucket is split, we would not know where its overflow 
records are stored 
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Recursive linear hashing: example 

P0=5, P1=3, P2=2, C=2 

 

 

 

 

 

 

 

Overflow records of bucket 5 at level 0 are stored in bucket 
5%3=2 at level 1 (together with those of bucket 2) 

Overflow records of that bucket are stored at level 2  
in bucket 2%4=2 
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Spiral hashing  

With Linear hashing there is a higher chance that buckets  
yet-unsplit during current expansion will 

In fact, using an uniform hash function means that every value 
of H0(k) is equi-probable, but buckets for which H0(k)<SP  
have been already split 

Lo Spiral hashing (Martin, ’79) tries to solve this issue by 
exploiting an exponential function, allowing to store records 
more densely in the initial portion of primary area 

The name of this organization derives from the fact  
that the storage area is considered as a spiral,  
rather than a line, and the primary area is a revolution  
of that spiral, univocally defined by an angle z 
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Spiral hashing: intuition 

Primary area expands with a 
growth factor w 

The higher w, the quicker 
the growth of primary area 

Primary area lies along  
a revolution of the spiral 

The number of pages  
in the primary area is  
P= wz+1  – wz  

The value of z is increased  
at each expansion 

Initially, z=0 (P=1) 
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Spiral hashing: logical addresses (i) 

Let H(k) be a hash function 
with values in [0,1[ 

The “direction” of a key k  
is given by function 
X(k,z) = z-H(k)  + H(k) 
with values in [z,z+1[  
and discontinuous in z – z  

197 

X(k1,z) 

X(k2,z) 
X(k3,z) 



Spiral hashing: logical addresses (ii) 

The logical address of k  
is given by the exponential 
function m= wX(k,z)  

Minimum value wz   

Maxnimum value wz+1  –1 

The relative address is  
mr= wX(k,z)  – wz    
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Spiral hashing: proprieties of addresses 

If the function H(k) is uniform, keys are distributed uniformly  
in [z,z+1[ 

The exponential behavior allows pages with small addresses  
to receive more reocrds than pages with high addresses 

Inversely depends on the graph slope 

Expansion of primary area is performed, as for linear hashing, 
“removing” records from the first bucket and moving them  
to a new bucket created at the end of the file 
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Spiral hashing: split 

We always split the bucket 
with lowest address 

Actually, the address  
of the overflown bucket  
is no longer generated 

Records of bucket wz   
are moved in new buckets 
created at the end of the file 

Value of the angle is thus 
increased from z to z’ 
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Spiral hashing: new value of z 

The value of z’ should guarantee that wz  is no longer 
generated: wz’  = wz +1 

Thus: z’ = logw( wz +1) 

Therefore, the number of added buckets is: 

wz’ +1   –  wz’ +1  = w(wz’+1)   –  w·wz  

 that is, w  or w  depending on the value of z 

Thus, w –1 determines the growth of primary area 
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Spiral hashing: example 

With w=2 and z=0, we obtain: 
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1 

2 3 

4 5 

6 7 

z = 0, [ 20 , 20+1  –1] 

z’= log2( 20 +1) = 1, [ 21 , 21+1  –1] 

3 

4 5 

z’= log2( 21 +1) = log23,  

[ 2log23 , 2log23+1  –1] 

z’= log2( 2log23 +1) = 2,  

[ 22 , 22+1  –1] 

7 8 5 6 
z’= log2( 22 +1) = log25,  

[ 2log25 , 2log25+1  –1] 
9 



Spiral hashing: expansion 

Function X(k,z) guarantees that logical addresses of keys  
in buckets other than the first are not modified 

In fact, X(k,z) and X(k,z’) only differ for those keys having 
H(k) [z – z , z’ – z’ [, that is, between the two discontinuity 
points 

Since z’ = logw( wz +1), such keys are only those  
with logical address wz  
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Spiral hashing: physical addresses 

Deleting the first bucket in the file 
poses the problem of reusing such pages 

It is therefore required to “map” logical addresses m 
into physical addresses ph(m) 

The basic schema is the following: 
Numbering starts at 0 

The first added bucket replaces the one deleted at the beginning 

Other buckets are added at the end 
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Spiral hashing: allocation example 

With w=3 e z=0, we obtain: 
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1 2 

2 4 
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3 

3 6 

4 5 9 6 7 

5 

7 8 

8 10 11 

[ 30 , 30+1  –1] 

[ 3log32 , 3log32+1  –1] 

[ 3log33 , 3log33+1  –1] 

[ 3log34 , 3log34+1  –1] 



Spiral hashing: converting addresses 

Let l = (m –1)/w  and h = m/w , ph(m) equals: 
ph(h), if l<h 

m –h –1, otherwise 

In the previous example, for bucket 6 we have: 
l = 5/3  = 1, h = 6/3  = 2 

Therefore, we need to compute ph(2) such that: 
l = 1/3  = 0, h = 2/3  = 0 

Thus, ph(6)=ph(2)= 2 – 0 – 1 = 1 

For bucket 7, on the other hand: l = 2, h = 2,  
thus ph(7) = 7 – 2 – 1 = 4 
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Spiral hashing: performance (i) 

The main advantage of spiral hashing is the clear reduction of 
oscillatory phenomena of linear hashing 

w=2, C=10, Cov=3 
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Spiral hashing: performance (ii) 

With controlled splits, increasing w increases search costs 

With uncontrolled splits, this does not happen, but storage 
utilization is reduced 

C=10, Cov=3, R=15000 
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