
Index Structures

Tecnologie delle Basi di Dati M

Cons of file organizations

Heap and sequential organizations have clear pros:
For heap, inserting is very quick

For sequential, all operations are quick enough

Both have their cons, however:
For heap, searching is very slow

For sequential, searching is efficient (more or less)
only if it is performed on the sort attribute
(moreover, periodic re-organizations are a must)

2

Index structures

They are auxiliary structures designed to speed up the search
for records satisfying a given boolean predicate

Data are stored within heap or sequential files

Every index speeds up the search for a different predicate
(search key)

They are (in practice) a collection of pairs <key, RID> (entry)

The goal of the index is to speed up the retrieval of those
entries having a key value that satisfies the predicate

Pro: entries are (much) smaller than records

3

Access paths

Building indices on a relation provides alternative ways (access
paths) to quickly locate data of interest

We commonly use the term (search) key (value) to indicate the
value of an attribute used to select records (e.g., B is a key)

4

Tree index

B key

27

A key

Heap data file

Hash

27 27

SELECT *

FROM R

WHERE B = 27 SELECT *

FROM R

WHERE A = ‘XX’

XX

Indices: basic principle

From the logical point of view, an index can be seen as a
set of pairs (entries) (ki,pi), where:

ki is a key value of the attribute
on which the index is built

pi is a pointer to the record(s) with search key value ki
In a DBMS, it is a RID or, at least, a PID

The advantage of using an index comes from thefact that the
key is just a (small) part of the information in a record

Therefore, the index is typically smaller than the data file

Indices differ in the way they organize the set of pairs (ki,pi)

5

C5

0 8 16 32 48

C2 C11 C7 C4

Record key value

Data file
C2

C4

C5

C7

C11

key pointer

Index 8

48

0

32

16

Index access: general schema

Let us consider an index built on a primary key
used to search for the record having key ki

The steps to be performed are:
1. Accessing the index

2. Searching for the pair (ki, pi)

3. Accessing the data page pointed by pi

6

k i p i

1

2
3

Index

Data file
k i

k i

Index types

Different types of indices exist
The first distinction is between

Sorted indices: key values ki are kept sorted,
so that they can be accessed in a quicker way

Hash indices: a hash function is used to find out
the location of entries with key value ki

Such indices are not well suited for range searches

7

Indices: terminology

Clustered vs. unclustered

Primary vs. secondary

Single-level vs. multi-level

Dense vs. sparse

Such terminology is not standard,
for example, someone calls primary what we call clustered
and secondary what we call unclustered

8

Clustered vs. unclustered indices

We say that the index is clustered if it is built on the same
attribute used to sort records in the data file, otherwise we say
that is unclustered

Clearly, we can build at most one clustered index for each
relation, while we can build an arbitrary number of unclustered
indices

9

10
20
30
40

10
20

30
40

50
60

70
80

90
100

50
60
70
80

90
100
110
120

Data file

C
lu

s
te

re
d

 i
n

d
e

x
 o

n
 A

A B

d

b

a

o

q

z

s

h

f
g

a
b
d
f

g
h
m
o

q
s
t
z

U
n

c
lu

s
te

re
d

 in
d

e
x

 o
n

 B

Primary vs. secondary indices

We say that the index is primary if it is built
on a unique attribute (candidate key),
otherwise it is called secondary

10

10
10
10
20

30
30
40
40

40
100
100
120

S
e
c
o

n
d

a
ry

 i
n

d
e
x
 o

n
 A

 40
20

10
40

100
10

10
30

40
100

Data file A B

d

b

a

o

q

z

s

h

f
g

a
b
d
f

g
h
m
o

q
s
t
z

P
rim

a
ry

 in
d

e
x

 o
n

 B

Secondary indices with pointers lists

To avoid repeating key values, the most commonly
used solution for secondary indices consists in
grouping all entries sharing the same key value
in a pointers list

11

Data file A B

10
20
30
40

100
120

S
e

c
o

n
d

a
ry

 i
n

d
e

x
 o

n
 A

 40
20

10
40

100
10

10
30

40
100

d

b

a

o

q

z

s

h

f
g

Dense vs. sparse indices

In dense indices the number of pointers equals the number of
records in the data file

In sparse indices this is lower (usually, on for each data page)

This technique is applicable only to clustered indices
(why?)

12

10
30
50
70

10
20

30
40

50
60

70
80

90
100

90
110
130
150

170
190
210
230

S
p

a
rs

e
 i
n

d
e

x

Single-level vs. multi-level indices

All previous examples included single-level (or “flat”) indices

However, we can “index the index” using a (sparse!) index, and
so on (recursively), creating a multi-level structure (tree)

13

10
30
50
70

10
20

30
40

50
60

70
80

90
100

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

2-levels index

Example (1)

14

160229323 BNCGRG78L21A944K Bianchi Giorgio

160235467 RSSNNA78A53A944V Rossi Anna

160239654 VRDMRC79H20F839X Verdi Marco

160239980 VRDMRT78L66A944K Verdoni Marta

160240467 ………………… ……….. ………..

160240532 ………………… ……….. ………..

160240576 ………………… ……….. ………..

160240600 ………………… ……….. ………..

160240623 ………………… ……….. ………..

160229323

160239980

160240576

……

Data file

primary clustered sparse single-level index

Index

Example (2)

160229323 BNCGRG78L21A944K Bianchi Giorgio

160235467 RSSNNA78A53A944V Rossi Anna

160239654 VRDMRC79H20F839X Verdi Marco

160239980 VRDMRT78L66A944K Verdone Marta

160240467 ………………… Alessandri Maria

160240532 ………………… Bianchini Carlo

160240576 ………………… Rossi Demetrio

160240600 ………………… Bianchi Arrigo

160240623 ………………… Verdi Remo

Alessandri

Bianchi

Bianchini

data pages
secondary unclustered dense single-level index

RID list

………………… ………………… ………………… …………………
… … …

Rossi

…..

……

Verdi

Verdone

…… …

N.B. the list can be implemented as:

…. ….
key value

pointer to a
pointers page

record pointers

15

Index specification in SQL

In SQL, we can define indices by way of the
CREATE INDEX statement
(this is not standard!)

In DB2:

 CREATE INDEX VotoIDX -- secondary unclustered index

 ON Esami(Voto DESC) -- ASC is the default

 CREATE UNIQUE INDEX MatrIDX -- primary unclustered index

 ON Studenti(Matricola)

 CREATE INDEX VotoIDX -- clustered index

 ON Esami(Voto DESC) CLUSTER

 CREATE INDEX Anagrafica -- multi-attribute index

 ON Persone(Cognome,Nome)
16

Multi-level indices

For efficiency reasons, usually indices are multi-level (trees)

Can we “adapt” to secondary memory search trees meant for
main memory?

Requisites:
Balancing (worst case performance)

Pagination (we are using disk)

Minimal page utilization (size)

Updating efficiency

17

Paginating trees (i)

Trees for main memory (AVL trees, red-black trees)
are typically binary trees

Very large number of nodes
Visiting the tree requires several accesses

We should pack several nodes in a single page

18

7 nodes per page

Paginating trees(ii)

Cons:
Complication of the balancing algorithm (inefficient during
updates)

No guarantee on the minimum page utilization

We should find a specific solution!

19

7 nodes per page

B-tree (R. Bayer & E. McCreight, 1972)

Tree-shaped data structure that keeps sorted data and
balances nodes allowing insert, deletion, and search operations
in logarithmically amortized time

Etymology (D. Comer):
Balanced?

Broad?

Bushy?

Boeing?

Bayer?

“What really lives to say is: the more you think about what
the B in B-trees means, the better you understand B-trees.”
(E. McCreight, 2013)

20

B-tree: terminology

A B-tree is a multi-way perfectly balanced tree where
nodes correspond to data pages

Every node contains a number m of entries that can
vary in the range d – 2d (d = order of the tree)

The number of children nodes of each node equals
m+1 (thus it can vary in the range d+1 – 2d+1)

High fan-out, thus limited height

(Very) low search cost

Limited size

The root node is allowed to violate the minimum
utilization constraint, thus having a single entry

21

B-tree: features

Perfect balancing means that every path from the root
to any leaf has the same length (height of the tree)

The search algorithm follows a single path from the
root to a single leaf (cost ≤ height)

Perfect balancing is guaranteed by algorithms for
inserting and deleting records

In order to guarantee balancing,
node-branching operations are performed
towards the root (not towards the leaves)

Minimum occupation of 50%
(except for the root node)

Typical occupation > 66%
22

B-tree: format of internal nodes

Internal nodes have the following format,
where: k1 < k2 < … < km

23

(k1, r1) (k2, r2) … (ki, ri) (ki+1, ri+1) (km, rm)

< k1

 > k1

< k2

…

 > ki

< ki+1

> km

B-tree: format of leaf nodes

Leaf nodes have the following format, where: k1 < k2 < … < km

Since no pointers (to sub-trees) exist,
typically leaf nodes can store more entries than internal nodes

24

(k1, r1) (k2, r2) … (ki, ri) (ki+1, ri+1) (km, rm) …

Example of B-tree

This is an example of an order 1 B-tree:

25

100

150 179 30

3 20 40 120 130 153 164 180

30 < K < 100

K < 100

B-tree: search

The algorithm starts by visiting the tree root
Usually, this is kept in main memory

We look for the search key k within current node entries
If such an entry exist, found

If such entry does not exist and we are in a leaf, not found

If such entry does not exist and we are in an internal node,
replace the current node with its i-th children node,
where: ki-1 < k < ki

26

B-tree: search example

We search for the key 40
40<100 => we follow the left child

40>30 => we follow the right child

What if we search for 30? And what for 90?

27

100

150 179 30

3 20 40 120 130 153 164 180

30 < K

K < 100

Search cost

Every node is replaced by one of its children

In the worst case we reach a leaf node

Cost ≤ tree height – 1 + 1
– 1 because the root node is in RAM

+ 1 for accessing the data file

Not needed if the index contains the data

It follows that we need to know how to compute
the height of a B-tree with order d

28

Maximum number of nodes in a B-tree with height h

The maximum number of nodes is reached when all nodes are
full, that is they contain 2d entries

Every internal node thus has 2d+1 child nodes

The maximum number of entries is therefore:

29

d

d
db

hh

l

l

2

112
12

1

0

max

 1122 maxmax
h

dbdN

Minimum number of nodes in a B-tree with height h

The minimum number of nodes is reached when all nodes
(except the root) are half full, that is they contain d entries,
while the root only contains a single entry

Every internal node thus has d+1 child nodes

The minimum number of entries is therefore :

30

d

d
db

hh

l

l 11
21121

12

0

min

 11211
1

minmin
h

dbdN

Height of a B-tree

Now, we know N, thus we can compute the tree height as:

Moving to logarithms, we obtain:

31

 112112
1

maxmin

 hh
dNd

NNN

 1
2

1
log1log 112

N
hN dd

Height of a B-tree: example

Let us consider the following values:
Key length: 8 bytes

RID length: 4 bytes

PID length: 2 bytes

Page size: 4096 bytes

We obtain:
(8+4)2d + 2(2d+1) = 4096

d = (4096-2)/(24+4) = 146

If N = 109, searching for a key value requires at most
log147(109/2) + 1 = 5 I/O operations!

A binary search would require 22 accesses,
supposing all pages are completely full

32

Height of a B-tree : considerations

Variability of h is, with N and d fixed, very limited
(maximum – minimum = 1)

With the following values of d, with h = 3 we can store up to
(2*146+1)3 – 1 = about 25 millions keys

33

1.E+00

1.E+03

1.E+06

1.E+09

1.E+12

1.E+15

1.E+18

1.E+21

1.E+24

0 1 2 3 4 5 6 7 8 9 10

Nmin

Nmax
P d

N

1000 1000000 1000000000

hmin hmax hmin hmax hmin hmax

512 18 3 3 5 5 7 8

1024 36 2 2 4 4 6 6

2048 73 2 2 4 4 5 5

4096 146 2 2 3 3 5 5

8192 292 2 2 3 3 4 4

16384 585 1 2 3 3 4 4

B-tree: range search

The algorithm starts by visiting the tree root

The tree is traversed in-order

Supposing d=0:
Visit the left sub-tree

Visit the key

Visit the right sub-tree

It is inefficient, since RIDs are stored also in internal nodes

34

B+-tree

The main features of a B+-tree are:
The entries (ki,ri) are all contained in leaf nodes

The tree is higher (with respect to a B-tree)

Leaves are linked as a list (possibly, double-linked)
using pointers (PIDs) to simplify range search

Internal nodes contain only key values (not necessarily
corresponding to values existing in data records)

The order of internal nodes is higher

The tree is lower (with respect to a B-tree)

35

B+-tree: format of internal nodes

Internal nodes have the following format,
where: k1 < k2 < … < km

36

k1 k2 … ki ki+1 km

≤ k1

 > k1

≤ k2

…

 > ki

≤ ki+1

> km

Example of B+-tree

This is an example of an order 1 B+-tree

37

100

150 179 30

3 30 40 120 150 153 164 180

30 < K ≤ 100

K ≤ 100

B+-tree: search

The algorithm starts by visiting the tree root
Usually, this is kept in main memory

We look for the search key k within current node entries
If we are in an internal node, replace the current node
with its i-th children node, where: ki-1 < k < ki

If we are in a leaf node and such an entry exist, found

If we are in a leaf node and such entry does not exist, not found

Cost = tree height

38

B+-tree: search example

We search for the key 40
40<100 => we follow the left child

40>30 => we follow the right child

What if we search for 30? And what for 90?

39

100

150 179 30

3 30 40 120 150 153 164 180

30 < K

K < 100

B+-tree: range search

Let us suppose to search for the range [klow,khigh]

Search for the first key value k≥klow

Since leaves are linked as a list, we can avoid traversing
the tree and sequentially scan leaf nodes until we find a value
k>khigh

The RIDs we find in the list are the query result
If the index is unclustered, we might need to sort RIDs,
in order to avoid accessing a page multiple times

And what if the index is sparse?

40

B+-tree: range search example

We search for keys in the range [35,160]
35<100 => we follow the left child

35>30 => we follow the right child

From here, we scan leaves until we find 164>160

41

100

150 179 30

3 30 40 120 150 153 164 180

30 < K

K < 100

B+-tree: insert

Let us suppose we want to insert a new entry (k,r)

The insert algorithm first looks for the leaf node
where the new key value k should be inserted

If there is enough space (the leaf contains less than 2d entries)
the new pair (k,r) is inserted in the leaf and the algorithm ends

What if there is not space enough (overflown leaf)?

42

B+-tree: leaf split

The overflown leaf F is split in two leaves (FL e FR)

Each leaf will contain half of F entries

We compute the median value kc of F entries (usually c=d)

We move to FL all entries having key value k ≤ kc

We move to FR all entries having key value k > kc

In the parent node of F the pointer to F is replaced
by the two pointers to FL and FR and by the value kc

43

B+-tree: split propagation

What if the parent node of F is full?

It is an overflown node: we act as before, so we split it

It follows that splitting propagates recursively towards the root

In the worst case, the root node is also full,
we split it in two and create a new root node

The tree height increases

This is why the root cannot have minimum occupation higher
than 2

44

B+-tree: split example

Order 2 B+-tree

We insert the key value 9

45

4 10 16 20

1 2 3 4 5 7 8 10 11 14 15 17 19 21 23 24 25

4 8

1 2 3 4 5 7 8 11 14 15 17 19 21 23 24 25 9 10

16 20

10

B+-tree: insert cost

Without split: h reads + 1 write

With split:
In the worst case, we recursively split up to the root:
h reads + 2h+1 writes

For computing the average value, we should note that, for a
tree with b nodes, we had b-1 splits

Since Nmin=1+d(b-1)≤N

We obtain that the average number of splits is (b-1)/N, that is
about 1/d

Average cost: ≤ h reads + 1+2/d writes

46

B+-tree: alternative strategy for overflows

As we just saw, splitting a node could be very inefficient

An alternative strategy considers giving some entries of the
overflown node to a non-overflown sibling node (with the same
parent node) (re-distribution)

We reduce the number of splits

The cost is higher (we read and re-write more nodes)

On average, we obtain a “fuller” tree

47

B+-tree: delete

Let us suppose we want to delete an entry (k,r)

The delete algorithm first looks for the leaf node
where the key value k should be stored

We delete the entry from the leaf

If the leaf contains at least d entries the algorithm ends

What if the leaf contains d–1 entries (underflown leaf)?

48

B+-tree: underflow management

We have two alternatives:
Redistributing entries of the underflown leaf with a sibling leaf
(with the same parent node)

Delete the underflown leaf, inserting its entries in a sibling leaf

The second alternative is possible only if the sibling leaf has
d or d+1 entry (otherwise?)

Deletion can be recursively propagated towards the root
In the worst case, the root underflows

The tree height decreases

49

B+-tree: redistribution

If the sibling node contains more than d+1 entries we have to
redistribute

Entries are distributed in a balanced way
among the two sibling nodes

We should update the separating value in the parent node
The number of entries in the father node does not change

This phenomenon does not propagate towards the root

50

B+-tree: concatenation example

Order 2 B+-tree

Delete the key value 10

51

4 9 16 20

1 2 3 4 5 7 8 9 11 14 15 17 19 21 23 24 25

4 8

1 2 3 4 5 7 8 11 14 15 17 19 21 23 24 25 9 10

16 20

10

B+-tree: redistribution example

Order 2 B+-tree

Delete the key value 19

52

4 8

1 2 3 4 5 7 8 11 14 15 17 19 21 23 24 25 9 10

16 20

10

4 8

1 2 3 4 5 7 8 11 14 15 17 21 23 24 25 9 10

16 21

10

B+-tree: delete cost

Without underflow: h reads + 1 write

With underflow:
Every concatenation costs 1 read + 2 writes

In the worst case, we recursively concatenate up to the root

Concatenation for all levels, except the upper two

Redistribution in the root child

Maximum cost: 2h–1 reads + h+1 writes

Average number of concatenations: 1/d

Average cost: ≤ h+1+1/d reads + 1+2+2/d writes

53

B+-tree: memory occupation

Every internal node contains at most
2d key values and 2d+1 PIDs

The order of a B+-tree is therefore computed as:

For trees, we need to know whether the index is primary or
secondary

In some cases, the leaf level can coincide with the data file

54

PIDsizekeysize

PIDsizepagesize
d

2

B+-tree: number of leaves (primary index)

In every leaf we find at most 2d entries (k,r) and 1 or 2 pointers
to sibling nodes

Therefore, the order of leaf nodes is:

Thus, the number of leaf nodes is:

The average fill factor u usually equals log2

55

RIDsizekeysize

PIDsizepagesize
d leaf

2

2

ud

N
NL

leaf

Height of a B+-tree

Since we know NL, we can now compute the B+-tree height:

Moving to logarithms, we obtain:

56

 12

maxmin

1212

hh
dNLd

NLNLNL

 2
2

log1log 112

NL
hNL dd

B+-tree in practice

Secondary index

B+-tree as a data file

Variable-length keys

Key compression

Multi-attribute B+-tree

Bulk-loading

Implementing B+-tree: GiST

57

B+-tree as a secondary index

When duplicate values exist, every key value could not be
paired with just a RID, but to a RID list

Tipically, the list is kept sorted for PID values (why?)

What if the RID list is (very) long?

It can be the case that the size of a single entry exceeds
the page size

Possible solutions:

Overflow pages for the leaf

Duplicating the keys in the index

Using PIDs instead of RIDs

Posting file

58

B+-tree: duplicating keys

This means that several entries exist with the same key value
(but different RID)

We should slightly modify the search algorithm (in practice,
this becomes a range search)

Not every leaf is “addressed”

Inefficient when deleting
We insert the RID as “part” of the key

The index is now “primary”

59

5

1 2 5 5 5 5 5 6 8 9

B+-tree: using PIDs

Instead of keeping a list of RIDs, we keep a list of PIDs,
including only those pages containing at least a record
with that key value

PIDsize ≤ RIDsize

number of PIDs ≤ number of RID

This is efficient if a page usually contains several records
with the same key value

Clustered index

60

B+-tree: posting file

The RID list is stored in a separate file

Every entry in the posting file has the format (k,l), where
k key value

l RID list having key value k

B+-tree entries contain pointers to posting file entries

We introduce an additional indirection level
The cost of each operation is increased by 1

61

B+-tree as a data file

Tree leaves contain the data records
In its original version, the B-tree was introduced as a data file
organization

Pros:
The data file is automatically sorted

Sorting is kept also when insertion/deletions are present

Cons:
Updates move records, thus changing their RIDs…

62

B+-tree: variable-length keys

What we saw up to now is only valid for fixed-length entries

This cannot hold in some cases:
Variable-length keys(e.g., varchar)

Secondary index

Index as a data file

In such cases, the concept of order is no longer valid,
and we should apply considerations on minimum node
utilization

63

B+-tree: key compression

Clearly, in order to minimize access costs,
we should strive to have high values of d

We can consider reducing the key length (compress)
within nodes

B+-trees are not constrained to have existing key values
within internal nodes

Their goal is to distinguish the content of sibling nodes

Example:

 “Ser” is enough…

64

Semenzara … Serbelloni Mazzanti Vien Dal Mare Silvani…

B+-tree: multi-attribute searching

Suppose we have a multi-attribute search predicate

SELECT * FROM persone

WHERE cognome=“Rossi”

AND anno>1990

How can we exploit an index to efficiently solve such query?

65

B+-tree: using multiple indices

A first technique exploits a single index:
We use only the first (or the second) predicate to retrieve
all result records

Then, we verify the remaining predicate on such records

A second technique exploits both indices:
We separately retrieve RIDs of records satisfying
either predicate

We perform the intersection of the results

This is efficient if RIDs are sorted

66

Multi-attribute B+-tree

In both cases, the additional work to be done can nullify
the advantage of using the index

We can build a multi-attribute index

The key is composed by the concatenation of relevant
attributes

Sorting is performed on lexicographic order
We consider the following attribute
only if the previous attribute is equal

67

Multi-attribute B+-tree: example

Index on (cognome, anno)

With this we can efficiently solve queries on cognome and
(cognome, anno)

What about range searches?

Not on anno alone (why?)

With n attributes we can have n! different indices

68

(Bianchi, 1982) … (Rossi, 1978) (Rossi, 1985) (Rossi, 1992) … (Verdi, 1974)

(Rossi, 1985)

B+-tree: bulk-loading

Come visto, l’inserimento di elementi in un
B+-tree provoca uno split ogni d record inseriti

Spesso la decisione di costruire un indice
non avviene in fase di creazione del DB
ma in seguito

Ad esempio, ci accorgiamo che una query è lenta

È conveniente creare un indice su una tabella numerosa
effettuando l’inserimento uno a uno?

Evidentemente no…

69

B+-tree: loading

A list of entries (key,RID) is created and sorted for key values

Such list (appropriately paged) corresponds to the leaf level

In case, we can use a fill factor lower than 100%

Starting from the key values in every leaf node
a list of entries (key,PID) is created

Such list (appropriately paged) corresponds to the first level
above the leaves

… and so on, recursively, until we reach the root
(all entries can be contained in a single node)

70

Implementing B+-tree: GiST

GiST (Generalized Search Tree) (Hellerstein, Naughton, Pfeffer,
’95) is not a specific access method, but a general structure
that, when appropriately instantiated, can behave
like a B+-tree, a R-tree, etc.

The main goal is not defining a new index type, rather
simplifying the development of different access methods

For example: B+-tree in the Postgres system requires
about 3000 lines of C code

The same B+-tree implemented as a GiST instance,
requires about 500 lines of code

71

Basic GiST concepts

Instead of considering specific queries, each query is seen as a
generic predicate (q)

Every GiST node contains a list of entries (p,ptr),
where p is a predicate (key) and ptr is a pointer

We only access the sub-tree referred by the pointer ptr
associated to the key p if p is consistent with the q predicate,
that is, only if p does not exclude the possibility
that the sub-tree could contain some records satisfying q

The only GiST constraint is the monotonicity of p, that should
hold for every record contained in the sub-tree pointed by ptr

72

Predicate monotonicity

We should check whether, given a query q,
the sub-tree pointed by ptr should be accessed

E.g.: q=italian(X)&&student(X)

E.g.: q=mexican(X)&&freshman(X)

E.g.: q=french(X)&&worker(X)

73

p = european(X) && graduating(X)

ptr =

GiST properties

Independently of the specific instance, every GiST has the
following properties:

A GiST is a perfectly balanced paged tree

An entry in an internal node is a pair (p,ptr), where:

p predicate used as a search key

ptr pointer to another GiST node

An entry in a leaf node is a pair (p,ptr), where:

p key value

ptr pointer to a tuple (DB record) satisfying p

Every node (except the root) contains at most M entries
and at least f M entries, with 2/M ≤ f ≤ 1/2 (f = minimum
fill factor)

With variable-length entries, we use values dependent on entries size

The root, if it is not a leaf, contains at least two entries

For each entry (p,ptr) in an internal node,
p holds for all tuples reachable from ptr

74

The real GiST

The base of GiST is the definition of a number of methods, used
to manage:

key values (Key methods)

tree nodes (Tree methods)

The GiST definition only specifies Tree methods

Implementation of Key methods is given when GiST is
instantiated to manage a specific type of keys

E.g.: real values (B+-tree)

E.g.: multi-dimensional ranges (R-tree)

Since Key methods are called by Tree methods,
we need to provide a standard interface for the former ones

75

Key methods: search

Consistent(E,q)
Input: Entry E=(p,ptr) and search predicate q

Output: if p & q == false then false else true

The goal of Consistent is “pruning” the search space
(that is, eliminating sub-trees)

If the predicate of a sub-tree is not consistent with the query,
then we avoid visiting the whole sub-tree

76

Consistent: comments

If the test p & q is computationally demanding,
we can still use a conservative approximation,
that is, Consistent returns “true” even if p & q = false

This only affects efficiency, not correctness of results
(we access a sub-tree, although the records contained
therein do not belong to the query result)

Consistent (just like the other methods) is specified
so as to work with arbitrarily complex predicates

In practice, predicates can be “restricted” in order to
improve algorithms performance

77

Consistent in B+-tree

Every predicate is a range [x,y[

If the query is a single value v
Consistent returns true if and only if x ≤ v < y

If the query is a range [v,w[
Consistent returns false if and only if x ≥ w or y ≤ v

78

Key methods: predicate creation

Union(P)
Input: Set of entries P = {(p1,ptr1),…,(pn,ptrn)}

Output: A predicate r holding for all tuples reachable
 by way of one of the entry pointers

The goal of Union is providing the information needed
to characterize the predicate of a parent node,
starting from predicates of children nodes

In general, r can be logically derived as a predicate such as
(p1 | … | pn) r

79

Union in B+-tree

Given P = {([v1,w1[,ptr1),…,([vn,wn[,ptrn)}

Returns [min{v1,…,vn}, max{w1,…,wn}[

80

Key methods: key compression

Compress(E)
Input: Entry E = (p,ptr)

Output: Entry E’= (p’,ptr), with p’ compressed
representation of p

The goal of Compress is providing a more efficient
representation of the p predicate

E.g.: separators in place of totally ordered ranges

E.g.: prefixes from strings (prefix-B+-tree)

81

Key methods: key decompression

Decompress(E)
Input: Entry E’= (p’,ptr), with p’ = Compress(p)

Output: Entry E = (r,ptr), with p r

Compression is, in general, lossy
E.g.: prefix-B+-tree

Condition p r requires that, if information loss occurs,
what we obtain with Decompress is a predicate that holds
if p holds

The simplest case is when Decompress is the identity function

82

Key methods: insert

Penalty(E1,E2)
Input: Entries E1 = (p1,ptr1) and E2 = (p2,ptr2)

Output: A “penalty” value resulting from inserting E2
 in the sub-tree rooted in E1

Penalty is used by Tree methods Insert and Split, and is needed
to compare different alternatives for updating the tree

83

Penalty in B+-tree

E1 = ([x1,y1[,ptr1) e E2 = ([x2,y2[,ptr2)

If E1 is the first entry in its node
Penalty returns max{y2 – y1, 0}

If E1 is the last entry in its node
Penalty returns max{x1 – x2, 0}

Otherwise
Penalty returns max{y2 – y1, 0} + max{x1 – x2, 0}

84

Key methods: split

PickSplit(P)
Input: Set of M+1 entries

Output: Two sets of entries, P1 e P2, with cardinality ≥ f M

PickSplit implements the real split strategy,
which is not detailed at this level

Usually, we try to minimize some metric similar to Penalty

85

Picksplit in B+-tree

P1 contains the first (M+1)/2 entries

P2 contains the remaining entries

With variable-length entries we use some criterion
on entry size, not on number of entries

This could lead to violate the minimum utilization constraint

86

Tree methods

Tree methods call other tree methods
and use defined Key methods

We implicitly assume that keys are compressed on write
and de-compressed on read

87

Tree methods: architecture

Search: calls Consistent

Insert: calls ChooseSubtree, Split and AdjustKeys

ChooseSubtree: calls Penalty

Split: calls a PickSplit and Union

AdjustKeys: calls Union

Delete: calls Search and CondenseTree

CondenseTree: calls AdjustKeys and Insert

88

Search

The search algorithm recursively descend the tree,
using Consistent to prune useless branches

Search(R,q)

Input: (sub-)tree rooted at R and query q

Output: all records satisfying q

if R is not a leaf

for each E in R

if Consistent(E,q) Search(*(E.ptr),q)

else for each E in R

if Consistent(E,q)

add *(E.ptr) to result

89

Search in linear domains

For (totally ordered) linear domains, as in the B+-tree case,
GiST specifies a more efficient extension that exploits
the contiguity of leaves to solve range queries

In particular, Search reaches the first leaf which is “consistent”
with query q

After that, pointers in the linked list of leaves are used
until a leaf is reached which is “inconsistent” with query q

90

Insert

The insertion algorithm is used to both insert new entries
and re-insert “orphaned” entries, resulting from underflows

For this, the input also includes the tree level
where the entry should be inserted, with the understanding
that leaves are at level 0

In case of overflow, we call the Split function
and propagate updates towards the root

91

Insert

Insert(R,E,l)

Input: Tree rooted at R, entry E, level l

Output: Tree with E inserted at level l

N = ChooseSubtree(R,E,l)

if E can be inserted in N
insert E in N

else Split(R,N,E)

AdjustKeys(R,N)

92

ChooseSubtree

ChooseSubtree uses Penalty to recursively determine
the sub-tree where E should be inserted

ChooseSubtree(R,E,l)

Input: Tree rooted at R, entry E, level l

Output: node N at level l where E should be inserted

if R is at level l return R

else choose among all entries F = (p’,ptr’) in R the one
minimizing Penalty(F,E)

return ChooseSubtree(*(F.ptr’),E,l)

93

Split

Split uses PickSplit to divide entries of an overflown node

The parent of the overflown node is still on the call stack

Split(R,N,E)

Input: Tree rooted in R, node N, entry E

Output: Tree with N split and E inserted

P1,P2 = PickSplit({entries of N} U {E})

insert P1 in N e P2 in a new node N’

p’ = Union(P2), ptr’ = &N’, E’ = (p’,ptr’)

if E’ can be inserted in Parent(N)

then insert E’ in Parent(N)

else Split(R,Parent(N),E’)

F = entry in Parent(N) with F.ptr = &N

F.p = Union(P1) 94

AdjustKeys

AdjustKeys recomputes key values (predicates)
following an update

The algorithm recursively climbs the tree and it terminates
when it reaches the root or an already accurate key value

AdjustKeys(R,N)

Input: Tree rooted at R, node N

Output: Tree with N ancestors having correct and accurate
key values

if N = R or for entry E = (p,ptr), with ptr = &N,
 E.p = Union({entry of N}) already holds

return

else E.p = Union({entry of N})

AdjustKeys(R,Parent(N))
95

Delete

Delete keeps the tree balanced, decreasing its height
if the root, when CondenseTree terminates, has a single child

Delete(R,E)

Input: Tree rooted at R, entry E = (p,ptr)

Output: Tree with E removed

Search(R,E.p)

if E not found return

L = node containing E, remove E from L

CondenseTree(R,L)

if R has a single entry

remove R

make the child of R the new GiST root node
96

CondenseTree

CondenseTree manages the re-insertion at the original level of
orphaned entries from underflown nodes, kept in a set

CondenseTree(R,L)

Input: Tree rooted at R and leaf L

Output: New tree

N = L, Q = {}

if N = R goto end

else P = Parent(N), E = entry in P: E.ptr = &N

if #{entry of N} < k M

Q = Q U {entry of N}, remove E from P, AdjustKeys(R,P)

if E was not removed from P AdjustKeys(R,N)

else N = P, restart

for each E in Q Insert(R,E,level(E)) 97

Performance evaluation

Up to now, we computed the search performance of a B+-tree
as a primary index

In the case of a secondary index we should know

How many leaves contain result entries

How many data pages contain result records

We will suppose that:

RID lists in the leaves are sorted

We will not access a data page more than once (for each key value)

Attribute values are uniformly distributed in the data file

Every value is repeated (on average) N/K times

Records are uniformly distributed in pages of the data file

98

Estimating the number of result pages

If we should retrieve R records in P pages

1/P = probability that a record is inside a given page

1–1/P = prob. that a page does not contain a record

(1–1/P)R = prob. that a page does not contain any
record

1–(1–1/P)R = prob. that a page contains at least one
record

Multiplying this by the number of pages, we obtain the average
number of pages to be accessed

(R,P) = P (1–(1–1/P)R) ≤ min{R,P}

Given a drawer with an infinite number of socks in P colors,
how many different colors we have, in average, when R socks
are taken?

99

Cardenas model

The model we just saw (Cardenas) assumes pages with infinite
size (note that N does not appear in the formula)

This leads to an appreciable underestimation of the
correct value for pages with less than about 10 record

If R = N, the formula returns a value lower than P

 (N,P) = P (1–(1–1/P)N) P (1–e–N/P)

100

0.6

0.7

0.8

0.9

1

0 5 10 15 20

F(R,P)/P

R/P

Yao model

The model by Yao takes into account the actual capacity
C = N/P of pages

The model considers all possible ways for allocating
the R result records in the P pages

 = number of combinations

 = number of combinations excluding a page

 = combinations including a given page

 = probability that the page contains at least
 one record

101

R

N

R

CN

R

CN

R

N

R

N

R

CN

1

Formula by Yao

Multiplying by the number of pages, we obtain
the average number of accessed pages

E.g.: N=1000, P=250

102

R

N

R

CN

NPCNR 1,,

0

0.2

0.4

0.6

0.8

1

0 500 1000

F
/P

R

Cardenas

Yao

Comparing the models

When pages contain a variable number of records,
it can be proven that the formula by Yao overestimates costs

If record allocation is not uniform, both models overestimate
costs

If R is large, computing the formula by Yao could be
computationally expensive

103

R

i iN

iCN
NPCNR

1 1

1
1,,

Cost of index access

Total cost = index cost + data pages cost

Index cost = cost for the first leaf + cost for reading all leaves
Cost for the first leaf = h-1

Number of leaves = L*EK/K

Data pages cost: EK times the formula by Cardenas (or Yao)
= EK x F(N/K,P)

This should be compared with sequential cost
= P

104

Example

File with N = 106 records in P = 40000 pages

Unclustered index on an attribute with K = 105 values
with L = 7045 leaves and height h = 4

We see that the tree
height contribution
is entirely irrelevant
for costs

105

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 100 1000 10000

Ex
p

e
ct

e
d

 r
e

ad
 p

ag
e

s

EK

sequential

unclustered
index

Cost for range search A [x,y]

Total cost = index cost + data pages cost

Index cost = cost for the first leaf + cost for “sequentially”
reading all leaves

Cost for the first leaf = h-1

Number of leaves = fs*L

fs = selectivity factor of predicate = (y-x)/(maxA-minA)

Data pages cost: fs*K times the formula by Cardenas (or Yao)
= fs*K F(N/K,P) (sorting attribute)

= fs*P (non-sorting attribute)

106

Hash indices

Differently from table-based techniques, where the association
<key, RID> is explicitly stored, a hash-based organization
uses a hash function, H, trasforming every key value
into an address

107

H

hash function
key k RID of records with key = k

Hash indices: collisions

Except for particular cases, hash functions are non-injective:
 k1 ≠ k2 H(k1) ≠ H(k2)

 thus collisions might occur

If k1 and k2 ≠ k1 collide, H(k1) = H(k2)

A hash function that does not generate collisions is called
perfect

Every address generated by the hash function identifies
a logical page, or bucket

The number of “elements” (key values for indices,
records for data organizations) that are contained in a bucket
defines the capacity, C, of buckets

108

Hash indices: overflow

The memory composed by buckets addressable by the hash
function is called primary area

If a key is assigned to a bucket already containing C keys,
the bucket overflows

Managing overflows could require, depending on the specific
technique, using a separate memory area, called overflow area

109

Static and dynamic hash indices

A hash function should be surjective, thus able to generate
P different addresses, as many as the primary area buckets

If, for a specific hash technique, the value of P is constant,
the hash technique is called static

In this case, the primary area size is part of the design
of the hash index

On the other hand, if the primary area can expand and
contract, in order to adapt to the actual data volume, the hash
technique is called dynamic

In this case, multiple hash functions are needed

The first dynamic hash techniques were proposed around
the end of’70s, while static techniques were first developed
in the ’50s

110

Common features of hash indices

For both static and dynamic techniques, some common aspects
are worth mentioning:

Choice of the actual hash function H

Overflow management policy

Capacity C of primary area buckets

Capacity Cov (not necessarily equals to C) of buckets
in the overflow area (if applicable)

Utilization of allocated memory

Hash techniques are usually primary (but also secondary)

Usually, hash functions do not preserve order,
that is they are non-monotone

Using hash indices is not recommended in cases
where range queries are possible (or frequent)

111

Static hashing

The figure shows a simple example of a static hash
organization, where:

Keys correspond to natural numbers

Primary area is made up of P = 5 buckets with size C = 5

The hash function is: H(ki) = ki % 5

Overflows are managed by allocating, for each primary
bucket, one or more overflow bucket, with size Cov = 5,
linked in a list

112

0 X

21 16 31 1 X

32 77 17 12 2 2

53 3 X

69 24 4 X

22 X Primary area

Overflow area

Static hashing: cost analysis

For a hash file with N records in buckets of size C = Cov,
whose primary area contains P buckets, under the hypothesis
of a perfect distribution of records on the P addresses, it is:

every address is generated N/P times

every list contains N/(P*C) buckets

The search cost for a record is thus proportional to N/(P*C)

E.g.: N = 106, C = 10, P = 25000

A (successful) search accesses (on average) 2 buckets

This equals the number of I/O operations, supposing
that each bucket requires a single I/O read

113

Hash functions

A hash function is a (surjective) transformation
from the key space, K, to the address space, {0,...,P - 1}

The hypothesis than an arbitrary subset of K would be
transformed to the P different addresses in a perfectly
homogeneous way is pure abstraction, not very useful for
analyzing performance obtainable from different hash
organizations

The ideal case that should be used to compare a specific hash
function H is the one with uniform distribution on the address
space, where, for every subset of K, each of the P addresses
has the same probability, 1/P, of being generated

114

Hash functions: uniform distribution

In the ideal case, the number of keys, Xj, assigned to the
j-th bucket follows a binomial distribution

 with average value m and variance s2 given as:

 where neither m nor s2 depend on the specific bucket

For P >> 1, the ratio / is almost equal to 1

115

jj xNx

j

jj
PPx

N
xX

1
1

1
Pr

PP

N

P

N 1
12

Quality of a hash function

For “real” hash functions, performance varies
depending on the specific set of key values

E.g.: The function H(ki) = ki % P is a “good” function,
but for the set of key values {0, P, 2P, 3P,…,N·P}
would allocate all keys in the bucket with address 0

Every hash function, when it is chosen independently
from the specific set of key values, could lead to very bad
performance, in the worst case

In the “average” case, however, when arbitrary subsets of K
and real data files are considered, we observe that different
hash functions actually behave differently

116

Degeneracy

An appropriate criterion for evaluating an hash function H,
with respect to a particular set ok key values, is the analysis of
its degeneracy / , where:

 are computed over all the P buckets and xj is the number
of records within the j-th bucket

The lower the degeneracy,
the better the behavior of the hash function

117

1

0

2

2
1

0

P

j

j
P

j

j

P

x

P

N

P

x

Hash functions: mid square

The key is multiplied by itself

A number of central digits equal to those of P - 1 is extracted

The so-obtained value is normalized by P

1451422=21066200164

For example, if P = 8000, by normalizing we obtain the address:
6620 x 0.8 = 5296

118

Hash functions: shifting

The key is divided into parts, each made up of a number
of digits equal to those of P – 1

Parts are then summed an the result normalized

E.g.: P = 800, k =14514387

387+514+14=915

By normalizing we obtain 915 x 0.8 = 732

119

Hash functions: folding

The key is divided as for shifting

Parts are “folded” and summed, then the result is normalized

E.g.: P = 800, k =14514387

783+514+41=1338

By normalizing we obtain :

 1338%800 = 538
538 x 0.8 = 430

120

Hash functions: division

The numeric key is divided by a number Q
and the address is obtained as the rest:

H(k) = k % Q

For the value of Q we have the following (empirical) advices:

Q is the highest prime number not higher than P

Q is not prime, not higher than P, with no prime factor
lower than 20

If Q < P, we should have P = Q in order to ensure
the surjectivity of the hash function

121

Hash functions : division (example)

P = 6997

k = 172146 H(k) = 4218

 172147 4219

 172148 4220

 172149 4221

 … …

 174924 6996

 174925 0

122

Alphanumeric keys

The management of alphanumeric strings requires
a preliminary conversion step

Probably the most common technique is to define:

An alphabet A, where strings’ characters are drawn

A bijective function ord(), associating to each alphabet
element an integer value in the range [1,|A|]

A conversion radix b

A string S = sn-1, ...,si, ...,s0 is then converted into a numeric key

123

 i
n

i

i bsordSk

1

0

)(

Alphanumeric keys: example

Given A = {a,b,…,z}, ord() with values in [1,26], and b = 32,
the string “indice” produces the value

k(“indice”)
= 9x325+14x324+4x323+9x322+3x321+5x320

= 316810341

Simpler techniques, not using a radix, like, for example

 are usually worse, since they can generate the same numeric
key with different strings, obtained as anagrams

124

1

0

)(
n

i

isordSk

Choosing the “right” radix

With the “division” technique we can have bad performance if
the radix b has prime factors in common with P

E.g.: given A = {a,b,…,z}, b = 32, and P = 512

The value H(k(S)) is determined by the last two characters only:
“folder”: ordinal values are 6, 15, 12, 4, 5, 18,
k(“folder”)=217,452,722, H(217452722)=178

“primer”: ordinal values are 16, 18, 9, 13, 5, 18,
k(“primer”)=556,053,682, H(556053682)=178

125

Choosing the “right” radix (cont.)

In order to understand the root causes of this problem,
we need to comprehend the properties of the % operator

The simplest case to consider is the one where P
is a multiple of b, that is P = x b

A value y exists so that by%(x b) = 0

For the % operator the following property holds
(useful for computing k(S)):

 characters sn-1 through sy give a contribute = 0 to the value of
H(k(S)) (in the example, y = 2), thus the “useful” string is only y
characters long

With radix = 26 we have problems whenever P has factors
13 and 2

126

 bbbsordbbsordSkH
n

i

i

i

n

i

i

i

%%%
1

0

1

0

Analysis of an example

The following experiment was performed by Mullin in 1991
by using, as the key dataset, all 6-char English words, on the
alphabet A = {a,b,…,z}, in the Unix spelling checker

The graph shows the case b = 26 with P varying
between 420 and 520

Distribution peaks
are obtained for P values
multiple of 13

In particular,
the maximum
is obtained for P = 507
= 13 x 13 x 3

127

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

420 440 460 480 500 520

d
e

ge
n

e
ra

cy

P

Load factor

Given an estimate of the number N of records,
and given the bucket capacity C, choosing a load factor d
determines the number P of buckets in the primary area

We should consider that, when d decreases, the percentage of
overflow records decreases as well

It is therefore not recommended using high values
of the load factor

Common values, representing a good trade-off
between memory utilization and operational costs,
are included in the range [0.7,0.8]

128

Bucket capacity

Clearly, a capacity such that reading/writing a single bucket
requires more than one I/O operation is not efficient

On the other hand, it is convenient to have bucket capacity
C > 1, due to the relationship existing between the value of C
and the fraction of overflow records

When increasing C, when the load factor d is constant,
the fraction of overflow records decreases,
under the hypothesis of an ideal hash function
and a separate overflow area exists

Empirically, the result is valid also in the case
of non-ideal hash functions

129

Optimal bucket capacity

Since increasing the number of overflow record results in poor
performance, it is recommended to have maximum bucket
capacity C, under the constraints:

Reading/writing a bucket should result in a single I/O
operation (sequential blocks)

Transferring a bucket with capacity C should cost less
than transferring two buckets with capacity lower than C

130

Computing the average number of overflows

The number of times that the j address is generated
is a random variable with a binomial distribution,
the average number of overflow in the j-th bucket is:

 that does not depend on the specific bucket j
For the sake of brevity, we will write Pr(x) in place of Pr{Xj = xj}

131

N

Cx

jjjj

j

xXCxCOV
1

Pr

Overflow distribution

The total number of overflows is obtained as:

For high values of N and P, we can approximate
the binomial distribution with the Poisson distribution :

Since P = N/(C x d):

132

N

Cx

j

P

j

j

j

xCxPCOVCOV
1

1

0

Pr

!

1
1

1
Pr

x

e

P

N

PPx

N
x

P

N
xxNx

!

Pr
x

e
dCx

dC
x

Total number of overflows

The total number of overflows is therefore obtained as :

By substituting the variable i = x – C:

Again, since P = N/(C x d):

133

N

Cx

dCx

x

edC
CxPCOV

1 !

CN

i

iidCC

iCCC

dCi

C

edC
PCOV

1

111

21!

 dCf
C

edC
NCOV

dCC

,
!

Example

C\d 0.5 0.7 0.9 0.95 1

1 0.213061 0.280836 0.340633 0.354464 0.367879

2 0.103638 0.170307 0.237853 0.254377 0.270669

5 0.02478 0.071143 0.137768 0.156336 0.17531

10 0.004437 0.028736 0.085344 0.103778 0.123244

20 0.000278 0.008014 0.047641 0.063497 0.080492

50 2.51E-07 0.000496 0.016561 0.026191 0.03622

134

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 10 20 30 40 50C

0.5

0.7

0.9

0.95

1

Managing overflows

Techniques used to manage overflows aim to reduce
the number of bucket accesses required to retrieve
the searched record

Two main strategies:
Chaining

Pointers are used

Overflow area might be used

Open addressing

Do not use pointers

Buckets in primary area are used to store overflow records

135

Chaining in primary area

Separate lists
If bucket j overflows, we insert the new record in the first non-
full bucket following j

Overflow record are linked in a list

Non-overflow record should be linked, too

Coalesced chaining
A single pointer is used for every bucket (not for every record)

Bucket lists could be merged (coalesced)

E.g.: j overflows in j+h and j+h is full,
both overflow in j+h+l

136

Examples

Separate lists

Coalesced chaining

The coalesced chaining
technique simplifies
pointers management,
but performance is worse

137

k H(k)

k1 j

k2 j

k3 j

k4 j+h

k5 j

k6 j+h

k5 j+h+l k6

k3 j+h k4

k1 j k2

k5 j+h+l k6

k3 j+h k4

k1 j k2

Chaining in overflow area

As said, the capacity of overflow area buckets Cov
could differ from the one of primary area buckets C

Usually, Cov < C to avoid wasting storage
in case of reduced overflows

For the same reason, we could use coalesced lists

Clearly, in case a overflow bucket overflows,
we would obtain an overflow bucket list

138

Open addressing

In open addressing techniques, every key value ki is associated
to a sequence of addresses
H0(ki), H1(ki), …, Hl(ki), with H0(ki) = H(ki)

When ki is inserted, we test all addresses H0(ki), H1(ki), …, Hl(ki)
until the address of a non-full bucket is found

139

Open addressing: searching

To search for ki we should look into all buckets with address
H0(ki), H1(ki), …, Hl(ki) until

Either we find ki (successful search)

Or we find a non-full bucket (unsuccessful search)

With open addressing techniques, we should be very careful
how we delete records

If a record of a full record is deleted, the bucket becomes
non-full, thus it “stops” the search

140

Open addressing: deleting records

The location of a deleted record is thus marked as
“non occupied”, and it can be “occupied” (re-used)
when new records are inserted

A bucket is full if and only if all its locations are “occupied”

141

free occupied
non

occupied

insert

insert

delete

Linear probing

At each step the address is increased by a constant value s
Hj(ki) = (Hj–1(ki) + s) % P

Thus: Hj(ki) = (H(ki) + s x j) % P

To make sure that all addresses can be generated, we need to
ensure that s and P have no common factors

Otherwise, only P/MCD(P,s) can be generated

E.g.: P=10, s=4, MCD(10,4)=2
Addresses for ki = 3 are 3, 7, 1, 5, 9, 3, …

142

Primary clustering

If bucket j overflows, it is likely that bucket j+s overflows,
thus that bucket j+2s overflows…

There is a clustering of records in some of the pages
E.g.: P=31, s=3, the following addresses are generated:

1234 → 25, 28, 0, 3, 6, 9, 12, …

245 → 28, 0, 3, 6, 9, 12, 15, …

The problem is due to the linearity of the probing step s

143

Quadratic probing

At each step the address is increased by a linear value
a + b(2j –1)

Hj(ki) = (Hj–1(ki) + a + b(2j –1)) % P

Thus: Hj(ki) = (H(ki) + a x j + b x j2) % P

E.g.: P=31, a=3, b=5, the following addresses are generated:

1234 → 25, 2, 20, 17, 24, 6, …

245 → 28, 5, 23, 20, 27, 13, …

Thus lists are not coalescing (e.g., see 20)

The problem of secondary clustering remains,
due to keys conflicting for the first address

144

Double hashing

We try to avoid the secondary clustering problem by using
two hash functions, H’ and H”

Address sequences are given by :
H0(ki) = H’(ki)

Hj(ki) = (Hj –1(ki) + H”(ki)) % P (if j>0)

Two keys generate the same sequence if and only if they collide
on both H’ and H”

145

Double hashing: comments

The double hashing techniques has the collateral effect
of producing a high variability of generated addresses,
depending on the value of H”(ki)

Considering the actual allocation of buckets
in secondary storage this could this can significantly
weigh down I/O operations

Subsequent buckets are “far away” from each other, increasing latency

Double hashing approximates well enough the ideal case of
“uniform hash” (random probing), where at the j-th step each
address has the same probability of being generated

146

Comparing different techniques

Techniques not using overflow area have a storage utilization u
equal to d

With overflow buckets, we obtain:

147

ovov CPCP

N
u

Search performance

Coalesced chaining
Successful search:

Unsuccessful search:

Separate chaining with overflow area
Successful search: E ≈ 1 + d/2

Unsuccessful search: A ≈ e-d + d

148

4

21
8

1
1 2 d

de
d

E d

 deA d 21
4

1
1 2

Performance: open addressing

Random probing: unsuccessful search
With buckets with capacity 1, search cost equals
the number of buckets needed to insert a new record

Probability of failure at each bucket equals d

Probability of having found r–1 occupied buckets Pr{costo=r}
thus equals (1-d) d r–1

Distribution is geometric with average value d/(1-d)

Average cost for unsuccessful search is thus:
A = d/(1-d)+1 = 1/(1-d)

149

Performance: open addressing

Random probing: successful search
Average number of accesses equals the average cost
for inserting all records

The sum can be rewritten as the difference of two armonic sums

150

1

0

1

0

1

/1

11 N

i

N

i iPN

P

PiN
E

NP

i

P

i iiN

P
E

11

11

Performance: open addressing

Random probing: successful search

We have:

Therefore:

151

 1

1

log
1

 nOcostn
i

N

i

 d
N

P

dN

P

NP

P

N

P
E

 1log

1

1
loglog

Performance: open addressing

Linear probing
Successful search:

Unsuccessful search:

If the bucket capacity C increases, performance of open addressing
techniques improve, since:

A(C)=1+(A(C=1) –1)/C

E(C)=1+(E(C=1) –1)/C

152

d
E

1

1
1

2

1

2
1

1
1

2

1

d
A

Comparison

Successful search Unsuccessful search

153

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

A
cc

e
ss

 c
o

st

d

Linear probing

Uniform probing

Coalesced chaining

Separate chaining

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

A
cc

e
ss

 c
o

st

d

Linear probing

Uniform probing

Coalesced chaining

Separate chaining

Problems for static organizations

Storage should be allocated during the initial design
If storage is overestimated, it is poorly used

If storage is underestimated, a high load factor follows,
thus costs increase

Moreover, if buckets overflow in primary area,
we have the constraint d ≤ 1

154

Dynamic Hashing

These techniques adapt the allocation of primary area
according to the actual number of records

They are divided in
With directory

Virtual hashing

Dynamic hashing

Extendible hashing

Without directory

Linear hashing

Spiral hashing

155

Virtual hashing

The basic idea of Virtual hashing (Litwin ’78) is doubling
the primary area whenever a bucket overflows

Records are distributed between the overflown bucket
and its “buddy”, by using a new hash function

In practice, we “split” the overflown bucket

156

overflow

buddies

Double primary area

Virtual hashing: using buddies

If, afterwards, another bucket in the original primary area
overflows, and its buddy is still unused, its record records are
distributed between the bucket and its buddy

157

buddies

Virtual hashing: directory

Since, in a given moment, only some of the buddies are actually
used, an auxiliary structure is needed to determine which hash
function should be used

In practice, a bit vector V is used, where V[i]=1 if and only if
the corresponding bucket is used

158

Virtual hashing: initializing primary area

P0 buckets with capacity C are allocated

An hash function H0 with values in [0, P0 –1] is used

We set l=0 (number of doublings)

A binary vector V is created, with length P0,
and all its elements are set to 1

After l doublings, the primary area contains P = 2l P0 buckets,
and the buddy of the j-th bucket (0 ≤ j ≤ 2l –1P0 –1)
is the bucket with address j + 2l –1P0

159

Virtual hashing: splitting bucket j

If l=0, or l>0 but the buddy of j is already used or does not exist
(l>0, but V[j+2l –1P0]=1 or j≥2l –1P0 –1)

l++, the primary area and the vector V are doubled

New elements of V equal 0, except for V[j+2l –1P0]=1

The new hash function Hl is used, with values in [0, 2lP0 –1]

Keys of bucket j are re-distributed using Hl

If the buddy of j exists and is not used (V[j+2l –1P0]=0)
V[j+2l –1P0]=1

Keys of bucket j are re-distributed using Hl

160

Virtual hashing: example (i)

P0=7, C=3

We use the family of hash functions
Hl(k) = k % (2lP0)

We insert the key k=3820
H0(3820) = 5

Bucket 5 overflows

161

112

1176

512

3270

841

723 6851 7830

1075

6647

2840

2665

2385

286

V

1

1

1

1

1

1

1

Virtual hashing: example (ii)

P1=14

The primary area and vector V are doubled

Keys of bucket 5 are re-distributed with its buddy 12,
by using the hash function H1(k) = k % 14

162

V

1

1

1

1

1

1

1

0

0

0

0

0

1

0

112

1176

512

3270

841

723 6851 7830

1075

6647

2665

2385

286

3820

2840

Virtual hashing: example (iii)

P1=14

If we have to insert 3343, we have H1(3343)=11

Since V[11]=0, we should apply H0(3343)=4

Bucket 4 overflows and is splitted
In this case without doubling the primary area

V[11]=1 and keys are re-distributed

And if we should insert 5485? 163

V

1

1

1

1

1

1

1

0

0

0

0

1

1

0

112

1176

512

3270

841

723 6851 7830 2665

2385

286

1075

6647

3343

3820

2840

Virtual hashing: search (and insert)

In order to search for a key value we need t know
which hash function was used when it was inserted

Vector V is what we need

The following method returns the address of the bucket
where the searched key could be (or where the new key
should be inserted)

Address(k, l)

Input: key k, level l

Output: Address of bucket at level l where k can be found

if (l<0) the key does not exist

else if V[Hl(k)] = 1 return Hl(k)

else return Address(k, l-1)

164

Virtual hashing: hash functions

Virtual hashing requires a series of hash functions H0, H1, …, Hl,
… satisfying the following properties:

Range condition: function Hl should have values
in [0, 2lP0 –1]

Split condition: for each l>0, for each k, and for each value of
Hl(k), the following should hold:

Hl(k) = Hl –1(k) otherwise Hl(k) = Hl –1(k)+ 2l –1P0

 that is, when a bucket is split its keys can only generate
either the bucket address, or the one of its buddy

The family of functions Hl(k) = k % (2lP0)
satisfies both conditions

165

Dynamic hashing

Dynamic hashing (Larson ’78) avoids doubling the whole
primary area (which limits the storage utilization and slows
down the organization during doubling), by using an auxiliary
structure (directory) organized as a binary trie

The basic idea (used also by extendible hashing) is to use
a hash function that, given the key k, returns not an address,
rather a binary pseudo-key H(k) = b0,b1,b2, …

The ideal case is the one where the set of pseudo-keys is such
that Pr{bi=1}=1/2, that is, a balanced partition is obtained
for each considered index

A simple technique to generate pseudo-keys is to use k
as the seed of a pseudo-random binary generator

166

Dynamic hashing: using the trie

The trie is used to drive the search,
and its leaves contain addresses of primary area buckets

To search for (or to insert) a key we descend the trie
corresponding to the generated pseudo-key,
until a leaf is reached

Example: bucket 1 contains all key values whose pseudo-key
is 0… and bucket 2 all those with pseudo-key 1…

167

0

1

1

2

trie Primary area

Dynamic hashing: overflow

Expansion of primary area is performed by adding a single
bucket at the time, re-distributing records between the
overflown bucket and its buddy, and adding a node to the trie

Example: we have to split bucket 2

Bucket 2 now contains
all keys whose pseudo-key
is 10…, and bucket 3 those with 11…

168

0

1

1

2 trie Primary area

3

0

1

Dynamic hashing: performance

If the trie is in main memory, a single access is sufficient
to retrieve a record

If the trie is not in main memory, performance depend on the
trie balancing, in terms of number of trie nodes to retrieve

In the worst case, performance is not so good
Depending on the pseudo-key set, inserting a new record
could lead to multiple splits

After deleting a record in a bucket, if the number of records in
that bucket is lower than the capacity C, buckets are merged,
and a leaf is deleted from the trie

Average storage utilization is about 70%

169

Dynamic hashing: variant

We initially allocate P buckets and use any static hash function
H0

When a overflow occurs, we generate P tries,
whose root nodes are addressed by H0

170

Primary area

0 1

trie 0

0 1

0 1

0 1

0 1

trie 1 trie 2 H0(k) = k % 3

Extendible hashing

It is quite similar to dynamic hashing, the main difference being
the directory management (Fagin et al., ’79)

No more than two I/O accesses are guaranteed

Directory consists in 2p cells with addresses [0,2p–1]

 p≥0 is called directory depth

A hash function associates to each key a binary pseudo-key,
H(k)=…b2,b1,b0, for which only the p least-significant bits
are used to directly access one of the 2p directory cells,
each containing a pointer to a bucket

171

Extendible hashing: bucket depth

Every bucket has a local depth p’≤p (value stored in the
bucket), indicating the actual number of bits used to allocate
keys within the bucket itself

Example: the bucket containing key 258 (…001) has p’=2,
thus it contains keys with pseudo-key both like …001 and …101

172

2 3 3 2 3 3

Primary area

p’

000 001 010 011 100 101 110 111 Directory (p=3)

Extendible hashing: splitting a bucket

Initially, as single bucket exists with p’ = 0 and p = 0

If a bucket has to be split with local depth p’,
2 cases are possible:

p’ < p

p’ = p

173

Extendible hashing: splitting a bucket with p’<p

A new bucket is allocated and keys are distributed
between the two buckets using the (p’+1)-th bit of pseudo-keys

For both buckets we set local depth at p’+1

Since p’ < p, at least a cell exists where the address of the new
bucket can be arranged

We update the pointer of the cell(s)

174

Example: splitting a un bucket with p’<p

175

2 3 3 2 3 3 p’

000 001 010 011 100 101 110 111 Directory (p=3)

2 3 3 3 3 3 p’

000 001 010 011 100 101 110 111 Directory (p=3)

3

Extendible hashing: splitting a bucket with p’=p

Since p’ = p, no cell exists to contain the address of the new
bucket (obtained from splitting the overflown bucket)

We double the directory, increasing p by 1

We copy pointers in the new cells (second half of the directory)

We perform split as when p’ < p

176

Example: splitting a un bucket with p’=p

177

1 2 2 p’

00 01 10 11 Directory (p=2)

1 2 3 p’

000 001 010 011 100 101 110 111 Directory (p=3)

3

Extendible hashing: deletion

If a record is deleted in a bucket with depth p’,
and the number of records in the bucket and in its buddy is not
higher than the capacity C, buckets are merged

The local depth of the resulting bucket is p’-1

If the only buckets at depth p’ = p are merged, it is possible to
contract the directory, halving it

Since testing that no bucket exists with local depth p requires,
in the worst case, to read all the buckets, it is appropriate
using a local depth table which, for every value p’ ≤ p,
stores the number, P(p’), of buckets having depth p’

178

Example: directory halving

179
1 2 2 p’

00 01 10 11 Directory (p=2)

1 2 3 p’

000 001 010 011 100 101 110 111 Directory (p=3)

3

1 2 2 p’

000 001 010 011 100 101 110 111 Directory (p=3)

Extendible hashing: comments

Every doubling affects the whole directory
Problems in case of concurrent operations

A solution exploits a multi-level directory
The index is no longer binary

180

Linear hashing

Linear expansion technique

“We do not split the overflown bucket,
rather we split another bucket,

chosen according to a specific criterion”
No directory is required

We have to manage overflows (in primary or separate area)

Primary area grows “linearly”

In the case of linear hashing, the bucket to be split is the one
following the last split bucket

181

Linear hashing: management of primary area

Initially, P0 buckets are allocated and we use the hash function
H0(k) = k % P0

We keep a pointer (split pointer, SP) to the next bucket
to be split

Initially, SP = 0

In case of an overflow
We add a new bucket with address P0 + SP

We re-distribute records in SP (including those that may be in
overflow area) by using the new hash function
H1(k) = k % (2P0)

We increase SP by 1

182

Linear hashing: doubling the primary area

After P0 overflows, we have a complete expansion of primary
area, since the number of buckets is now 2 P0

We prepare for a new expansion, setting SP = 0, H0(k) = H1(k),
and H1(k) = k % (22 P0)

During the j-th expansion we use the hash functions
H0(k) = k %(2j –1 P0) and H1(k) = k % (2j P0)

The address of the home bucket for a key is H0(k) if H0(k) ≥ SP,
H1(k) otherwise

183

Linear hashing: example(i)

P0=7, C=3, Cov=2, SP=2

The overflow of buckets 2 e 3 caused the split of buckets
0 and 1

Inserting the key 3820 (H0(3820) = 5) bucket 5 overflows
We split bucket 2

184

112

1176

512

3270

841

7830

1075

6647

2840

2665

2385

286 287

147

848 30

289

72

569

6851

717

731

563

Linear hashing: example (ii)

P0=7, C=3, Cov=2, SP=3

Allocation of bucket 9 caused the deletion of an overflow
bucket

The next overflow would split bucket 3

After 7 split the primary area is doubled
and we restart from SP=0

185

112

1176

512

3270

841

7830

1075

6647

2840

2665

2385

286 287

147

848 569

289

30

72

6851

717

731

563

Linear hashing: pros and cons

+ The lack of a directory and the management of splits
make implementing the structure very easy

+ Management of primary area (expansion and contraction)
is immediate, since buckets are always added (and removed)
at the end

– Storage utilization is rather low (variable between 0.5 and 0.7)

– Management of overflow area introduces problems
similar to the ones of a static organization

– Overflow chains of high-address, not yet split, buckets
can be very long

186

Linear hashing: storage utilization

A variant, improving storage utilization, does not split a bucket
if this does not reach a minimum utilization umin

187

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 2000 4000 6000 8000 10000

st
o

ra
ge

 u
ti

liz
at

io
n

R

0

0.7

0.8

0.9

Linear hashing: performance

When storage utilization increases, search costs increase as
well, since overflow records increase

Successful search costs

188

1

1.05

1.1

1.15

1.2

1.25

0 2000 4000 6000 8000 10000

st
o

ra
ge

 u
ti

liz
at

io
n

R

0

0.7

0.8

0.9

Minima of access
costs correspond
to maxima of
storage utilization

Linear hashing: overflow capacity

Increasing Cov reduces the length of overflow chains
Search cost reduces as well

Beyond a given point, we only waste storage

189

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 5 10 15 20
Cov

successful search

unsuccessful search

storage utilization

Recursive linear hashing

Principal characteristic of Recursive linear hashing
(Ramamohanarao & Sacks-Davis, ’84) is the management
of overflow area, dynamically organized using Linear hashing

Different levels of dynamic hash files are created
(on average, no more than 3), with the file at level h
(h=0 primary area) storing its overflow records into the file
at level h+1

At level h we keep the split pointer SPh

190

Recursive linear hashing: operations

Insertion:
We compute the address H0(k)

If the bucket overflows, we move to level 1 using function H1(k)

If also the bucket at level L overflows, we add a new level

Split:
When the j-th bucket at level h is split, records to distribute
are those of j-th bucket and those in overflow,
which are contained in buckets at levels (h+1), …, L

191

Recursive linear hashing: search

Searching for a key could require a number of disk accesses
equal to the number of levels

h = 0;

while (h ≤ L)

 if (Hh
0(k) < SPh) Address = Hh

1(k);

 else Address = Hh
0(k);

 if EXISTS(k, Address, h) return true;

 else if FULL(Address, h) h++;

 else return false;

192

Recursive linear hashing: addressing

Overflows at level h are stored using as the new “key”
the address of the bucket at level h itself

Allocation is not performed using the key value, k, otherwise,
when a bucket is split, we would not know where its overflow
records are stored

193

Recursive linear hashing: example

P0=5, P1=3, P2=2, C=2

Overflow records of bucket 5 at level 0 are stored in bucket
5%3=2 at level 1 (together with those of bucket 2)

Overflow records of that bucket are stored at level 2
in bucket 2%4=2

 194

10

90
h=0

SP0=3

21

111

312

42

48

93

39

114

25

75

46

56

127

247

20

76
h=1

SP1=2

101

77

32

85

103 29

34

54

100
h=2

SP2=1

97 105

Spiral hashing

With Linear hashing there is a higher chance that buckets
yet-unsplit during current expansion will

In fact, using an uniform hash function means that every value
of H0(k) is equi-probable, but buckets for which H0(k)<SP
have been already split

Lo Spiral hashing (Martin, ’79) tries to solve this issue by
exploiting an exponential function, allowing to store records
more densely in the initial portion of primary area

The name of this organization derives from the fact
that the storage area is considered as a spiral,
rather than a line, and the primary area is a revolution
of that spiral, univocally defined by an angle z

195

Spiral hashing: intuition

Primary area expands with a
growth factor w

The higher w, the quicker
the growth of primary area

Primary area lies along
a revolution of the spiral

The number of pages
in the primary area is
P= wz+1 – wz

The value of z is increased
at each expansion

Initially, z=0 (P=1)

196

z

Spiral hashing: logical addresses (i)

Let H(k) be a hash function
with values in [0,1[

The “direction” of a key k
is given by function
X(k,z) = z-H(k) + H(k)
with values in [z,z+1[
and discontinuous in z – z

197

X(k1,z)

X(k2,z)
X(k3,z)

Spiral hashing: logical addresses (ii)

The logical address of k
is given by the exponential
function m= wX(k,z)

Minimum value wz

Maxnimum value wz+1 –1

The relative address is
mr= wX(k,z) – wz

198

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

w
^z

z

m(k1)

m(k2)
m(k3)

Spiral hashing: proprieties of addresses

If the function H(k) is uniform, keys are distributed uniformly
in [z,z+1[

The exponential behavior allows pages with small addresses
to receive more reocrds than pages with high addresses

Inversely depends on the graph slope

Expansion of primary area is performed, as for linear hashing,
“removing” records from the first bucket and moving them
to a new bucket created at the end of the file

199

Spiral hashing: split

We always split the bucket
with lowest address

Actually, the address
of the overflown bucket
is no longer generated

Records of bucket wz
are moved in new buckets
created at the end of the file

Value of the angle is thus
increased from z to z’

200

z
z’

Spiral hashing: new value of z

The value of z’ should guarantee that wz is no longer
generated: wz’ = wz +1

Thus: z’ = logw(wz +1)

Therefore, the number of added buckets is:

wz’ +1 – wz’ +1 = w(wz’+1) – w·wz

 that is, w or w depending on the value of z

Thus, w –1 determines the growth of primary area

201

Spiral hashing: example

With w=2 and z=0, we obtain:

202

1

2 3

4 5

6 7

z = 0, [20 , 20+1 –1]

z’= log2(20 +1) = 1, [21 , 21+1 –1]

3

4 5

z’= log2(21 +1) = log23,

[2log23 , 2log23+1 –1]

z’= log2(2log23 +1) = 2,

[22 , 22+1 –1]

7 8 5 6
z’= log2(22 +1) = log25,

[2log25 , 2log25+1 –1]
9

Spiral hashing: expansion

Function X(k,z) guarantees that logical addresses of keys
in buckets other than the first are not modified

In fact, X(k,z) and X(k,z’) only differ for those keys having
H(k) [z – z , z’ – z’ [, that is, between the two discontinuity
points

Since z’ = logw(wz +1), such keys are only those
with logical address wz

203

Spiral hashing: physical addresses

Deleting the first bucket in the file
poses the problem of reusing such pages

It is therefore required to “map” logical addresses m
into physical addresses ph(m)

The basic schema is the following:
Numbering starts at 0

The first added bucket replaces the one deleted at the beginning

Other buckets are added at the end

204

Spiral hashing: allocation example

With w=3 e z=0, we obtain:

205

1 2

2 4

4 5

3

3 6

4 5 9 6 7

5

7 8

8 10 11

[30 , 30+1 –1]

[3log32 , 3log32+1 –1]

[3log33 , 3log33+1 –1]

[3log34 , 3log34+1 –1]

Spiral hashing: converting addresses

Let l = (m –1)/w and h = m/w , ph(m) equals:
ph(h), if l<h

m –h –1, otherwise

In the previous example, for bucket 6 we have:
l = 5/3 = 1, h = 6/3 = 2

Therefore, we need to compute ph(2) such that:
l = 1/3 = 0, h = 2/3 = 0

Thus, ph(6)=ph(2)= 2 – 0 – 1 = 1

For bucket 7, on the other hand: l = 2, h = 2,
thus ph(7) = 7 – 2 – 1 = 4

206

Spiral hashing: performance (i)

The main advantage of spiral hashing is the clear reduction of
oscillatory phenomena of linear hashing

w=2, C=10, Cov=3

207

1.002

1.003

1.004

1.005

1.006

1.007

1.008

1.009

0 10000 20000 30000 40000
R

successful search

1.085

1.09

1.095

1.1

1.105

1.11

1.115

1.12

1.125

0 10000 20000 30000 40000
R

unsuccessful search

Spiral hashing: performance (ii)

With controlled splits, increasing w increases search costs

With uncontrolled splits, this does not happen, but storage
utilization is reduced

C=10, Cov=3, R=15000

208

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1 1.5 2 2.5 3 3.5 4
w

successful search

0
0.8

